Improvements in the Magnesium Ion Transport Properties of Graphene/CNT-Wrapped TiO2 -B Nanoflowers by Nickel Doping

Small. 2024 Feb;20(6):e2304969. doi: 10.1002/smll.202304969. Epub 2023 Sep 28.

Abstract

Magnesium-ion batteries are widely studied for its environmentally friendly, low-cost, and high volumetric energy density. In this work, the solvothermal method is used to prepare titanium dioxide bronze (TiO2 -B) nanoflowers with different nickel (Ni) doping concentrations for use in magnesium ion batteries as cathode materials. As Ni doping enhances the electrical conductivity of TiO2 -B and promotes magnesium ion diffusion, the band gap of TiO2 -B host material can be significantly reduced, and as Ni content increases, diffusion contributes more to capacity. According to the electrochemical test, TiO2 -B exhibits excellent electrochemical performance when the Ni element doping content is 2 at% and it is coated with reduced graphene oxide@carbon nanotube (RGO@CNT). At a current density of 100 mA g-1 , NT-2/RGO@CNT discharge specific capacity is as high as 167.5 mAh g-1 , which is 2.36 times of the specific discharge capacity of pure TiO2 -B. It is a very valuable research material for magnesium ion battery cathode materials.

Keywords: Mg-ion batteries; Ni doping; TiO2-B; cycling stability.