Spatio-temporal variability in macroinvertebrate community structure and ecological health status of a tropical dynamic river-estuarine system, India: An integrated approach of multivariate analysis

Environ Res. 2023 Dec 1;238(Pt 2):117236. doi: 10.1016/j.envres.2023.117236. Epub 2023 Sep 30.

Abstract

River-estuarine ecosystems are under severe anthropogenic threat due to resource exploitation, transportation, sewage/industrial discharges, and pollutants from surrounding areas. Monitoring the water quality and biological communities is essential for assessing ecosystem health and sustainability. Present study integrated the ecological community data along with water quality analysis to understand the impact of anthropogenic pressures on benthic macroinvertebrates. Samples were collected from 10 locations (comprising of both rural and urban areas) for Benthic macroinvertebrates, physico-chemical and microbiological parameters along the lower stretch of the Bhagirathi-Hooghly river-estuarine (BHE) system during the post-monsoon seasons of 2020, 2021, and 2022. During the entire study period, a total of 5730 individuals from 54 families in 19 orders of 3 phylum of macroinvertebrate were recorded. Among them Thiaridae (27.1%) and Chironomidae (22.8%) were found to be the most abundant families. Based on the water quality data Cluster analysis and nMDS indicated two distinct groups of locations: Group-I with rural settings and Group-II with urban settings. Alpha diversity metrics showed higher diversity (2.817) and evenness (0.744) in rural locations (Group-I) compared to urban locations (Group-II). The overall saprobic score of the macroinvebrate data revealed Group-I (5.09) to be in good condition, while Group-II (4.95) showed moderately polluted conditions. Redundancy analysis (RDA) highlighted the correlation of pollution-tolerant species (Chironomidae, Culicidae) with high organic loads i.e., biochemical oxygen demand (BOD), chemical oxygen demand (COD) in Group-II. In contrast, Group-I locations exhibited positive correlations with Dissolved Oxygen (DO) and supported less pollution-tolerant organisms (Coenagrionidae, Dytiscidae). The study emphasizes the importance of integrated analysis of ecological community data and water quality parameters to assess the health status of river-estuarine ecosystems.

Keywords: Benthic community; Ecological indicators; Ganges; Multimetric indices; Pollution; Saprobic score; Water quality.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ecosystem
  • Environmental Monitoring
  • Humans
  • India
  • Invertebrates*
  • Multivariate Analysis
  • Rivers* / chemistry
  • Water Quality