Movement-related tactile gating in blindness

Sci Rep. 2023 Oct 2;13(1):16553. doi: 10.1038/s41598-023-43526-8.


When we perform an action, self-elicited movement induces suppression of somatosensory information to the cortex, requiring a correct motor-sensory and inter-sensory (i.e. cutaneous senses, kinesthesia, and proprioception) integration processes to be successful. However, recent works show that blindness might impact some of these elements. The current study investigates the effect of movement on tactile perception and the role of vision in this process. We measured the velocity discrimination threshold in 18 sighted and 18 blind individuals by having them perceive a sequence of two movements and discriminate the faster one in passive and active touch conditions. Participants' Just Noticeable Difference (JND) was measured to quantify their precision. Results showed a generally worse performance during the active touch condition compared to the passive. In particular, this difference was significant in the blind group, regardless of the blindness duration, but not in the sighted one. These findings suggest that the absence of visual calibration impacts motor-sensory and inter-sensory integration required during movement, diminishing the reliability of tactile signals in blind individuals. Our work spotlights the need for intervention in this population and should be considered in the sensory substitution/reinforcement device design.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blindness
  • Humans
  • Movement
  • Reproducibility of Results
  • Touch Perception*
  • Touch*