The Metabolome-Wide Signature of Major Depressive Disorder

Res Sq [Preprint]. 2023 Sep 21:rs.3.rs-3127544. doi: 10.21203/rs.3.rs-3127544/v1.

Abstract

Major Depressive Disorder (MDD) is an often-chronic condition with substantial molecular alterations and pathway dysregulations involved. Single metabolite, pathway and targeted metabolomics platforms have indeed revealed several metabolic alterations in depression including energy metabolism, neurotransmission and lipid metabolism. More comprehensive coverage of the metabolome is needed to further specify metabolic dysregulation in depression and reveal previously untargeted mechanisms. Here we measured 820 metabolites using the metabolome-wide Metabolon platform in 2770 subjects from a large Dutch clinical cohort with extensive depression clinical phenotyping (1101 current MDD, 868 remitted MDD, 801 healthy controls) at baseline and 1805 subjects at 6-year follow up (327 current MDD, 1045 remitted MDD, 433 healthy controls). MDD diagnosis was based on DSM-IV psychiatric interviews. Depression severity was measured with the Inventory of Depressive Symptomatology self-report. Associations between metabolites and MDD status and depression severity were assessed at baseline and at the 6-year follow-up. Metabolites consistently associated with MDD status or depression severity on both occasions were examined in Mendelian randomization (MR) analysis using metabolite (N=14,000) and MDD (N=800,000) GWAS results. At baseline, 139 and 126 metabolites were associated with current MDD status and depression severity, respectively, with 79 overlapping metabolites. Six years later, 34 out of the 79 metabolite associations were subsequently replicated. Downregulated metabolites were enriched with long-chain monounsaturated (P=6.7e-07) and saturated (P=3.2e-05) fatty acids and upregulated metabolites with lysophospholipids (P=3.4e-4). Adding BMI to the models changed results only marginally. MR analyses showed that genetically-predicted higher levels of the lysophospholipid 1-linoleoyl-GPE (18:2) were associated with greater risk of depression. The identified metabolome-wide profile of depression (severity) indicated altered lipid metabolism with downregulation of long-chain fatty acids and upregulation of lysophospholipids, for which causal involvement was suggested using genetic tools. This metabolomics signature offers a window on depression pathophysiology and a potential access point for the development of novel therapeutic approaches.

Publication types

  • Preprint