Flow in tubes and arteries--a comparison

Biorheology. 1986;23(4):395-433. doi: 10.3233/bir-1986-23408.

Abstract

The cardiovascular circulatory system of the human body can be compared with a network of tubes. It consists of a pump and a system of branched vessels. The arteries transport the blood to the periphery in a manner similar to that of a water supply network. It is important to know what kind of forces act upon "fittings", bends and bifurcations. It is also essential to assess whether the flow is laminar or turbulent, attached or separated. The flow should be optimized in such a manner as to minimize the drop in pressure. This means that no additional pressure loss due to separation or turbulence should occur, since such losses increase the pump power requirements. The loss appears in heating and acoustic energy. The necessary understanding of blood flow in human vessels is also of great interest to physicians since it is believed that the local flow behavior of blood determines the formation of atherosclerotic plaques. As in tubing systems, deposits in blood vessels are found close to bends and bifurcations. These deposits lead to impaired cerebral circulation and to myocardial infarction. A partial review of recent research into the details of flow behavior (like separation, stagnation and reattachment points) in bends and bifurcations of arterial models is presented. Studies involving steady and pulsatile flow conditions in rigid and elastic models with Newtonian and non-Newtonian fluids are shown here. The most important differences between blood vessels and tubes are discussed. This modern biofluidmechanical approach of detailed flow examination is compared with the more classical hemodynamic approach considering only gross features such as pressure loss coefficients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arteries / physiology*
  • Blood Circulation*
  • Blood Flow Velocity
  • Female
  • Humans
  • Male
  • Methods
  • Models, Cardiovascular*
  • Rheology