Starvation results in an energy-conserving reduction in metabolic rate that has features of an adaptive response. Tissue and organ sites of this response were investigated by examining the effects of starvation for 5 d on tissue blood flow (microsphere method) and regional arteriovenous O2 differences ((a-v)O2) in conscious rats resting quietly at 28 degrees C. Comparison was with fed and overnight-fasted animals. Whole body resting metabolic rates (MR), colonic temperatures (Tc), and tissue weights were also determined. Quantitative changes in energy expenditure (as O2 consumption) were obtained for two regions: the portal-drained viscera (PDV) and the hindquarters (HQ). Fasting overnight resulted in increased blood flow to white adipose tissue (WAT) and decreased flow to the brain, PDV, testes, and skin; however, MR, Tc, the two regional ((a-v)O2, and the weights of most tissues were not significantly altered. In comparison with overnight fasting, starvation for 5 d resulted in a 13% reduction in body weight, weight loss in many tissues and organs, a 26% reduction in MR, a decline of 0.5 degree C in Tc, decreased (a-v)O2 across both the PDV and HQ, reduced cardiac output, and decreased blood flow to the heart, PDV, skin, WAT, leg muscle, HQ, and the musculoskeletal body as a whole. Utilization of O2 by the PDV and HQ (flow X (a-v)O2) declined by amounts that accounted for 22 and 18%, respectively, of the reduction in MR. The reductions in cardiac output (18%) and heart blood flow (36%) indicate that the heart also made a contribution to energy conservation (roughly estimated as 5%).(ABSTRACT TRUNCATED AT 250 WORDS)