Central Core Substitutions and Film-Formation Process Optimization Enable Approaching 19% Efficiency All-Polymer Solar Cells

Adv Mater. 2023 Dec;35(51):e2307398. doi: 10.1002/adma.202307398. Epub 2023 Nov 10.

Abstract

Molecular interactions and film-formation processes greatly impact the blend film morphology and device performances of all-polymer solar cells (all-PSCs). Molecular structure, such as the central cores of polymer acceptors, would significantly influence this process. Herein, the central core substitutions of polymer acceptors are adjusted and three quinoxaline (Qx)-fused-core-based materials, PQx1, PQx2, and PQx3 are synthesized. The molecular aggregation ability and intermolecular interaction are systematically regulated, which subsequently influence the film-formation process and determine the resulting blend film morphology. As a result, PQx3, with favorable aggregation ability and moderate interaction with polymer donor PM6, achieves efficient all-PSCs with a high power conversion efficiency (PCE) of 17.60%, which could be further improved to 18.06% after carefully optimizing device annealing and interface layer. This impressive PCE is one of the highest values for binary all-PSCs based on the classical polymer donor PM6. PYF-T-o is also involved in promoting light utilization, and the resulting ternary device shows an impressive PCE of 18.82%. In addition, PM6:PQx3-based devices exhibit high film-thickness tolerance, superior stability, and considerable potential for large-scale devices (16.23% in 1 cm2 device). These results highlight the importance of structure optimization of polymer acceptors and film-formation process control for obtaining efficient and stable all-PSCs.

Keywords: all-polymer solar cells; central core substitution; film-formation process; intermolecular interactions; quinoxaline.