Rapid ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of three characteristic urinary saccharide metabolites in patients with glycogen storage diseases (type Ⅰb and Ⅱ)

J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Sep 1:1229:123900. doi: 10.1016/j.jchromb.2023.123900. Epub 2023 Oct 1.

Abstract

Urinary 1,5-anhydroglucitol (1, 5-AG), 6-α-D-glucopyranosyl-maltotriose (Glc4) and maltotetraose (M4) are important biomarkers for glycogen storage disease (types Ib and Ⅱ). This study aimed to develop and validate an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to detect these three urinary saccharide metabolites. Urine samples were diluted and then analyzed. Chromatographic separation was performed on an Acquity™ UPLC Amide column (2.1 × 100 mm, 1.7 μm) with gradient elution. The quantitation of analytes was achieved on a 5500 Qtrap mass spectrometer using negative multiple reaction monitoring (MRM) mode. The calibration curves for all analytes were linear over the range of 0.500 to 100 μg/mL with a correlation coefficient, R2 ≥ 0.999. The percent relative standard deviations (RSD%) were ≤12.8%, and the percent relative errors (RE%) were in the range of -11.7%-11.0%. The relative matrix effects of all analytes were between 87.2% and 104% with RSD% < 3.10% across three concentrations. The developed analytical method was simple, accurate, and reliable for rapid and simultaneous analysis of these three urinary saccharide metabolites. It was applied to healthy volunteers and patients. To our knowledge, it was the first validated assay for urinary maltotetraose quantification. This work provides support for exploring the potential of maltotetraose as a biomarker for Pompe disease.

Keywords: Glycogen storage disease; Saccharide metabolites; UPLC-MS/MS; Urine.

MeSH terms

  • Biomarkers
  • Chromatography, High Pressure Liquid / methods
  • Chromatography, Liquid
  • Glycogen Storage Disease*
  • Humans
  • Tandem Mass Spectrometry* / methods

Substances

  • Biomarkers