In hollow visceral organs, capillary pericytes appear to drive spontaneous Ca2+ transients in the upstream arterioles. Here, mechanisms underlying the intercellular synchrony of pericyte Ca2+ transients were explored. Ca2+ dynamics in NG2 chondroitin sulphate proteoglycan (NG2)-expressing capillary pericytes were examined using rectal mucosa-submucosa preparations of NG2-GCaMP6 mice. Spontaneous Ca2+ transients arising from endoplasmic reticulum Ca2+ release were synchronously developed amongst capillary pericytes in a gap junction blocker (3 μM carbenoxolone)-sensitive manner and could spread into upstream vascular segments. Spontaneous Ca2+ transients were suppressed by the Ca2+ -activated Cl- channel (CaCC) blocker niflumic acid and their synchrony was diminished by a TMEM16A inhibitor (3 μM Ani9) in accordance with TMEM16A immunoreactivity in pericytes. In capillaries where cyclooxygenase (COX)-2 immunoreactivity was expressed in endothelium but not pericytes, non-selective COX inhibitors (1 μM indomethacin or 10 μM diclofenac) or COX-2 inhibitor (10 μM NS 398) disrupted the synchrony of spontaneous Ca2+ transients and raised the basal Ca2+ level. Subsequent prostaglandin I2 (PGI2 ; 100 nM) or the KATP channel opener levcromakalim restored the synchrony with a reduction in the Ca2+ level. PGI2 receptor antagonist (1 μM RO1138452) also disrupted the synchrony of spontaneous Ca2+ transients and increased the basal Ca2+ level. Subsequent levcromakalim restored the synchrony and reversed the Ca2+ rise. Thus, the synchrony of spontaneous Ca2+ transients in pericytes appears to be developed by the spread of spontaneous transient depolarisations arising from the opening of TMEM16A CaCCs. Endothelial PGI2 may play a role in maintaining the synchrony, presumably by stabilising the resting membrane potential in pericytes. KEY POINTS: Capillary pericytes in the rectal mucosa generate synchronous spontaneous Ca2+ transients that could spread into the upstream vascular segment. Spontaneous Ca2+ release from the endoplasmic reticulum (ER) triggers the opening of Ca2+ -activated Cl- channel TMEM16A and resultant depolarisations that spread amongst pericytes via gap junctions, establishing the synchrony of spontaneous Ca2+ transients in pericytes. Prostaglandin I2 (PGI2 ), which is constitutively produced by the endothelium depending on cyclooxygenase-2, appears to prevent premature ER Ca2+ releases in the pericytes allowing periodic, regenerative Ca2+ releases. Endothelial PGI2 may maintain the synchrony of pericyte activity by stabilising pericyte resting membrane potential by opening of KATP channels.
Keywords: capillary; gastrointestinal tract; intracellular Ca2+ imaging; pericyte; prostacyclin.
© 2023 The Authors. The Journal of Physiology © 2023 The Physiological Society.