Macrophage phenotype transitions in a stochastic gene-regulatory network model

J Theor Biol. 2023 Nov 7:575:111634. doi: 10.1016/j.jtbi.2023.111634. Epub 2023 Oct 14.

Abstract

Polarization is the process by which a macrophage cell commits to a phenotype based on external signal stimulation. To know how this process is affected by random fluctuations and events within a cell is of utmost importance to better understand the underlying dynamics and predict possible phenotype transitions. For this purpose, we develop a stochastic modeling approach for the macrophage polarization process. We classify phenotype states using the Robust Perron Cluster Analysis and quantify transition pathways and probabilities by applying Transition Path Theory. Depending on the model parameters, we identify four bistable and one tristable phenotype configuration. We find that bistable transitions are fast but their states less robust. In contrast, phenotype transitions in the tristable situation have a comparatively long time duration, which reflects the robustness of the states. The results indicate parallels in the overall transition behavior of macrophage cells with other heterogeneous and plastic cell types, such as cancer cells. Our approach allows for a probabilistic interpretation of macrophage phenotype transitions and biological inference on phenotype robustness. In general, the methodology can easily be adapted to other systems where random state switches are known to occur.

Keywords: Cellular signaling; Markov state modeling; Transition path theory.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Regulatory Networks*
  • Phenotype
  • Probability
  • Stochastic Processes