Cell migration is an essential process in immunity and wound healing. The in vitro scratch assay was optimized for the SAF-1 cell line, obtained from gilthead seabream (Sparus aurata) fin. In addition, selected cells from the cell front were tracked for detailed individual cell movement and morphological analysis. Modulation of migration and cell tracking of the SAF-1 cell line by probiotics was evaluated. Cells were cultured and incubated for 24 h with three species of extremophilic yeasts [Yarrowia lipolytica (D1 and N6) and Debaryomyces hansenii (CBS004)] and the bacterium Shewanella putrefaciens (known as SpPdp11) and then scratch and cell tracking assays were performed. The results indicated that the forward velocity was significantly (p < 0.05) increased in SAF-1 cells incubated with CBS004 or SpPdp11. However, cell velocity, cumulative distance and Euclidean distance were only significantly increased in SAF-1 cells incubated with SpPdp11. Furthermore, to increase our understanding of the genes involved in cell movement, the expression profile of ten structural proteins (α-1β tubulin, vinculin, focal adhesion kinase type, alpha-2 integrin, tetraspanin, integrin-linked kinase 1, tensin 3, tensin 4, paxillin, and light chain 2) was studied by real time-PCR. The expression of these genes was modulated as a function of the probiotic tested and the results indicate that CBS004 and SpPdp11 increase the movement of SAF-1 cells.
Keywords: Cell tracking; Cytoskeleton; Extremophile yeasts; Scratch assay; Shewanella putrefaciens SpPdp11.
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.