A Ketogenic Diet may Improve Cognitive Function in Rats with Temporal Lobe Epilepsy by Regulating Endoplasmic Reticulum Stress and Synaptic Plasticity

Mol Neurobiol. 2024 Apr;61(4):2249-2264. doi: 10.1007/s12035-023-03659-3. Epub 2023 Oct 23.

Abstract

A ketogenic diet (KD) is often used in the treatment of refractory epilepsy. Many studies have found that it also has a positive impact on cognitive comorbidities, but the specific mechanism remains unclear. In many disease models, endoplasmic reticulum stress (ERS) and synaptic plasticity is considered a new therapeutic target for improving cognitive impairment, and it has become a research focus in recent years. Recently, studies have found that a KD has a certain regulatory effect on both ERS and synaptic plasticity, but this result has not been confirmed in epilepsy. To investigate the effect of a KD on ERS and synaptic plasticity. In this study, a rat model of temporal lobe epilepsy (TLE) induced by lithium chloride-pilocarpine was used. After the model was successfully established, the rats in each group were fed a normal diet or a KD for 28 days, and the effect of a KD on the latency and seizure frequency of spontaneous recurrent seizures (SRSs) was observed via video monitoring. Subsequently, a Morris water maze was used to evaluate the spatial learning and memory abilities of the rats in each group; the ultrastructure of the ER and the synapses of the hippocampus were observed by transmission electron microscopy, and the dendritic spine density of the hippocampus was analysed by Golgi staining. Long-term potentiation (LTP) was used to detect the synaptic plasticity of the rats' hippocampi, and the expression of ERS-related proteins and synapse-related proteins was detected by Western blotting. A KD effectively reduced the frequency of SRSs in rats with TLE and improved their learning and memory impairment. Further investigations found that a KD inhibited the up-regulation of glucose-regulated protein 78, phospho-protein kinase-like ER kinase, phosphorylated α subunit of eukaryotic initiation factor 2, activating transcription factor 4 and C/EBP homologous protein expression in the hippocampi of rats with TLE and protected the ultrastructure of the neuronal ER, suggesting that a KD suppressed excessive ERS induced by epilepsy. Concurrently, we also found that a KD not only improved the synaptic ultrastructure and increased the density of dendritic spines in rats with TLE but also reversed the epilepsy-induced LTP deficit to some extent. More importantly, the expression of postsynaptic density protein 95, synaptotagmin-1 and synaptosomal-associated protein 25 in the hippocampi of rats with epilepsy was significantly increased after KD intervention. The study findings indicate that a KD improves learning and memory impairment in rats with epilepsy, possibly by regulating ERS and synaptic plasticity.

Keywords: Cognitive function; Endoplasmic reticulum stress; Ketogenic diet; Synaptic plasticity; Temporal lobe epilepsy.

MeSH terms

  • Animals
  • Cognition
  • Diet, Ketogenic*
  • Disease Models, Animal
  • Endoplasmic Reticulum Stress
  • Epilepsy* / metabolism
  • Epilepsy, Temporal Lobe* / metabolism
  • Hippocampus / metabolism
  • Neuronal Plasticity / physiology
  • Rats
  • Seizures / metabolism
  • Spatial Learning / physiology