Restriction of Arginine Induces Antibiotic Tolerance in Staphylococcus aureus

bioRxiv [Preprint]. 2023 Oct 12:2023.10.12.561972. doi: 10.1101/2023.10.12.561972.


Staphylococcus aureus is responsible for a substantial number of invasive infections globally each year. These infections are problematic because they are frequently recalcitrant to antibiotic treatment, particularly when they are caused by Methicillin-Resistant Staphylococcus aureus (MRSA). Antibiotic tolerance, the ability for bacteria to persist despite normally lethal doses of antibiotics, is responsible for most antibiotic treatment failure in MRSA infections. To understand how antibiotic tolerance is induced, S. aureus biofilms exposed to multiple anti-MRSA antibiotics (vancomycin, ceftaroline, delafloxacin, and linezolid) were examined using both quantitative proteomics and transposon sequencing. These screens indicated that arginine metabolism is involved in antibiotic tolerance within a biofilm and led to the hypothesis that depletion of arginine within S. aureus communities can induce antibiotic tolerance. Consistent with this hypothesis, inactivation of argH, the final gene in the arginine synthesis pathway, induces antibiotic tolerance under conditions in which the parental strain is susceptible to antibiotics. Arginine restriction was found to induce antibiotic tolerance via inhibition of protein synthesis. Finally, although S. aureus fitness in a mouse skin infection model is decreased in an argH mutant, its ability to survive in vivo during antibiotic treatment with vancomycin is enhanced, highlighting the relationship between arginine metabolism and antibiotic tolerance during S. aureus infection. Uncovering this link between arginine metabolism and antibiotic tolerance has the potential to open new therapeutic avenues targeting previously recalcitrant S. aureus infections.

Keywords: Biofilm; Skin and Soft Tissue Infection (SSTI); TnSeq; antibiotic treatment failure; protein synthesis; proteomics.

Publication types

  • Preprint