Prediction of Acute Radiation-Induced Lung Toxicity After Stereotactic Body Radiation Therapy Using Dose-Volume Parameters From Functional Mapping on Gallium 68 Perfusion Positron Emission Tomography/Computed Tomography

Int J Radiat Oncol Biol Phys. 2024 Mar 15;118(4):952-962. doi: 10.1016/j.ijrobp.2023.10.004. Epub 2023 Oct 22.

Abstract

Purpose: The aim of this work was to compare anatomic and functional dose-volume parameters as predictors of acute radiation-induced lung toxicity (RILT) in patients with lung tumors treated with stereotactic body radiation therapy.

Methods and materials: Fifty-nine patients treated with stereotactic body radiation therapy were prospectively included. All patients underwent gallium 68 lung perfusion positron emission tomography (PET)/computed tomography (CT) imaging before treatment. Mean lung dose (MLD) and volumes receiving x Gy (VxGy, 5-30 Gy) were calculated in 5 lung volumes: the conventional anatomic volume (AV) delineated on CT images, 3 lung functional volumes (FVs) defined on lung perfusion PET imaging (FV50%, FV70%, and FV90%; ie, the minimal volume containing 50%, 70%, and 90% of the total activity within the AV), and a low FV (LFV; LFV = AV - FV90%). The primary endpoint of this analysis was grade ≥2 acute RILT at 3 months as assessed with National Cancer Institute Common Terminology Criteria for Adverse Events version 5. Dose-volume parameters in patients with and without acute RILT were compared. Receiver operating characteristic curves assessing the ability of dose-volume parameters to discriminate between patients with and without acute RILT were generated, and area under the curve (AUC) values were calculated.

Results: Of the 59 patients, 10 (17%) had grade ≥2 acute RILT. The MLD and the VxGy in the AV and LFV were not statistically different between patients with and without acute RILT (P > .05). All functional parameters were significantly higher in acute RILT patients (P < .05). AUC values (95% CI) for MLD AV, LFV, FV50%, FV70%, and FV90% were 0.66 (0.46-0.85), 0.60 (0.39-0.80), 0.77 (0.63-0.91), 0.77 (0.64-0.91), and 0.75 (0.58-0.91), respectively. AUC values for V20Gy AV, LFV, FV50%, FV70%, and FV90% were 0.65 (0.44-0.87), 0.64 (0.46-0.83), 0.82 (0.69-0.95), 0.81 (0.67-0.96), and 0.75 (0.57-0.94), respectively.

Conclusions: The predictive value of PET perfusion-based functional parameters outperforms the standard CT-based dose-volume parameters for the risk of grade ≥2 acute RILT. Functional parameters could be useful for guiding radiation therapy planning and reducing the risk of acute RILT.

MeSH terms

  • Acute Radiation Syndrome*
  • Carcinoma, Non-Small-Cell Lung* / diagnostic imaging
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / radiotherapy
  • Gallium* / therapeutic use
  • Humans
  • Lung / diagnostic imaging
  • Lung / pathology
  • Lung Neoplasms* / diagnostic imaging
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / radiotherapy
  • Perfusion
  • Positron Emission Tomography Computed Tomography
  • Radiation Pneumonitis* / pathology

Substances

  • Gallium