Sample Preparation Method for MALDI Mass Spectrometry Imaging of Fresh-Frozen Spines

Anal Chem. 2023 Nov 28;95(47):17337-17346. doi: 10.1021/acs.analchem.3c03672. Epub 2023 Oct 27.

Abstract

Technologies assessing the lipidomics, genomics, epigenomics, transcriptomics, and proteomics of tissue samples at single-cell resolution have deepened our understanding of physiology and pathophysiology at an unprecedented level of detail. However, the study of single-cell spatial metabolomics in undecalcified bones faces several significant challenges, such as the fragility of bone, which often requires decalcification or fixation leading to the degradation or removal of lipids and other molecules. As such, we describe a method for performing mass spectrometry imaging on undecalcified spine that is compatible with other spatial omics measurements. In brief, we use fresh-frozen rat spines and a system of carboxyl methylcellulose embedding, cryofilm, and polytetrafluoroethylene rollers to maintain tissue integrity while avoiding signal loss from variations in laser focus and artifacts from traditional tissue processing. This reveals various tissue types and lipidomic profiles of spinal regions at 10 μm spatial resolutions using matrix-assisted laser desorption/ionization mass spectrometry imaging. We expect this method to be adapted and applied to the analysis of the spinal cord, shedding light on the mechanistic aspects of cellular heterogeneity, development, and disease pathogenesis underlying different bone-related conditions and diseases. This study furthers the methodology for high spatial metabolomics of spines and adds to the collective efforts to achieve a holistic understanding of diseases via single-cell spatial multiomics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Diagnostic Imaging*
  • Lipidomics
  • Metabolomics* / methods
  • Rats
  • Specimen Handling / methods
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization / methods