The Imperative Use of Bacillus Consortium and Quercetin Contributes to Suppress Fusarium Wilt Disease by Direct Antagonism and Induced Resistance

Microorganisms. 2023 Oct 21;11(10):2603. doi: 10.3390/microorganisms11102603.

Abstract

Fusarium wilt diseases severely influence the growth and productivity of numerous crop plants. The consortium of antagonistic rhizospheric Bacillus strains and quercetin were evaluated imperatively as a possible remedy to effectively manage the Fusarium wilt disease of tomato plants. The selection of Bacillus strains was made based on in-vitro antagonistic bioassays against Fusarium oxysporum f.sp. lycoprsici (FOL). Quercetin was selected after screening a library of phytochemicals during in-silico molecular docking analysis using tomato LysM receptor kinases "SILKY12" based on its dual role in symbiosis and plant defense responses. After the selection of test materials, pot trials were conducted where tomato plants were provided consortium of Bacillus strains as soil drenching and quercetin as a foliar spray in different concentrations. The combined application of consortium (Bacillus velezensis strain BS6, Bacillus thuringiensis strain BS7, Bacillus fortis strain BS9) and quercetin (1.0 mM) reduced the Fusarium wilt disease index up to 69%, also resulting in increased plant growth attributes. Likewise, the imperative application of the Bacillus consortium and quercetin (1.0 mM) significantly increased total phenolic contents and activities of the enzymes of the phenylpropanoid pathway. Non-targeted metabolomics analysis was performed to investigate the perturbation in metabolites. FOL pathogen negatively affected a range of metabolites including carbohydrates, amino acids, phenylpropanoids, and organic acids. Thereinto, combined treatment of Bacillus consortium and quercetin (1.0 mM) ameliorated the production of different metabolites in tomato plants. These findings prove the imperative use of Bacillus consortium and quercetin as an effective and sustainable remedy to manage Fusarium wilt disease of tomato plants and to promote the growth of tomato plants under pathogen stress conditions.

Keywords: Bacillus; Fusarium wilt; antagonism; induced resistance; quercetin.