Background: The purpose of this study was to evaluate some of the clinical variables that influence the accuracy of reproducing the planned attachment shape. The following clinical variables were considered: the template material, type of composite, and pressure application on the template during attachment curing.
Methods: In this study, the evaluated materials for the thermoplastic transfer template construction are Erkolen 0.8 (polyethylene: PE) and Erkodur 0.8 (polyethylene terephthalate glycol-PET-G), and two types of composite resins: Enaflow (light-curing low-viscosity composite resin) and Enamel plus dentina HRI (light-curing high-viscosity composite resin). Two different light-curing lamps were used: Valo cordless color with no pressure and push light pressure (SCS). The 26 models included in the study were imported into the 3 Shape Ortho System 2022 (ver. 85.0.20 3 Shape, Denmark), and attachments were virtually placed on the dental elements of the first premolar and on both sides of the first upper molars. The accuracy of the attachment reproduction was evaluated through linear and angular evaluations against the reference model (MCAD). Three physical models were obtained: model A (MA), which was printed with attachments; model B (MB) with attachments made with a PE template; and model C (MC) with attachments made with a PET-G template.
Results: The results showed statistically significant differences (p < 0.05) between the PE and PET-G templates with greater precision using the PET-G template. Statistically significant differences (p < 0.05) were found among the high-viscosity composite and low-viscosity composite with pressure curing.
Conclusions: In light of the obtained data, using a PET-G template is recommended. The pressure application during composite curing reduces the reproduction accuracy with a low-viscosity composite.
Keywords: attachment curing; attachment materials; attachment shape; attachment template.