Human pancreatic plasticity is implied from multiple single-cell RNA sequencing (scRNA-seq) studies. However, these have been invariably based on static datasets from which fate trajectories can only be inferred using pseudotemporal estimations. Furthermore, the analysis of isolated islets has resulted in a drastic underrepresentation of other cell types, hindering our ability to interrogate exocrine-endocrine interactions. The long-term culture of human pancreatic slices (HPSs) has presented the field with an opportunity to dynamically track tissue plasticity at the single-cell level. Combining datasets from same-donor HPSs at different time points, with or without a known regenerative stimulus (BMP signaling), led to integrated single-cell datasets storing true temporal or treatment-dependent information. This integration revealed population shifts consistent with ductal progenitor activation, blurring of ductal/acinar boundaries, formation of ducto-acinar-endocrine differentiation axes, and detection of transitional insulin-producing cells. This study provides the first longitudinal scRNA-seq analysis of whole human pancreatic tissue, confirming its plasticity in a dynamic fashion.
Keywords: RNA Velocity; acinar cells; ductal cells; endocrine regeneration; human pancreatic slices; islet regeneration; pancreatic progenitors; scRNA-seq; type 1 diabetes; β cells.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.