Effect of vitrification on protein O-GlcNAcylation in mouse metaphase II oocytes

Reproduction. 2024 Jan 8;167(1):e230143. doi: 10.1530/REP-23-0143. Print 2024 Jan 1.

Abstract

In brief: Oocyte vitrification leads to DNA hypomethylation, which results in defect in early embryo development. This study reveals that oocyte vitrification impairs the DNA methylation pattern by influencing protein O-GlcNAcylation.

Abstract: Oocyte vitrification leads to decreased DNA methylation levels, which impairs the quality and the developmental potential of oocytes. However, the underlying molecular mechanism still need to be further revealed. In this study, mouse metaphase II (M II) oocytes were frozen by vitrification technology, while fresh oocytes were used as the control group. The effect of oocyte vitrification on protein O-GlcNAcylation and its impact on the developmental potential of oocytes were elucidated. We found that the protein O-GlcNAcylation levels were significantly increased in vitrified oocytes. Increase of protein O-GlcNAcylation levels in control oocytes by PUGNAc (an O-GlcNAcase inhibitor) decreases blastocyst rate after parthenogenetic activation (20.82% in PUGNAc-treated group; 53.82% in control group, P < 0.05). We also discovered that DNA methylation was disrupted in two-cell embryos derived from vitrified oocytes, resulting in decreased 5mC and increased 5hmC, showing similar phenotypes to that derived from PUGNAc-treated oocytes. In vitrified and PUGNAc-treated oocytes, O-GlcNAcylated TET3 was significantly increased. Notably, by inhibiting protein O-GlcNAcylation in vitrified oocytes using OSMI1 (an O-GlcNAc transferase inhibitor) we restored the DNA methylation in two-cell embryos and ameliorated the developmental defects in early embryo. Thus, elevated protein O-GlcNAcylation in vitrified oocytes is an essential contributor to their declining embryonic developmental potential. Modulation of protein O-GlcNAcylation improves the developmental potential of vitrified oocytes.

MeSH terms

  • Animals
  • Cryopreservation* / methods
  • Metaphase
  • Mice
  • Oocytes / metabolism
  • Vitrification*

Substances

  • N-acetylglucosaminono-1,5-lactone O-(phenylcarbamoyl)oxime