Disturbance mitigation of thiencarbazone-methyl·isoxaflutole on bacterial communities through nitrification inhibitor and attapulgite

Environ Pollut. 2024 Jan 1;340(Pt 2):122840. doi: 10.1016/j.envpol.2023.122840. Epub 2023 Nov 3.

Abstract

There is a knowledge gap in the interaction between the effects of herbicide thiencarbazone-methyl·isoxaflutole on soil microflora and environmental parameters, which leads to a lack of measures in mitigating damage to bacterial communities from the herbicide use. The impacts of thiencarbazone-methyl·isoxaflutole and soil parameters on the diversity, structure and functions of soil bacterial communities were clarified, and the effects and potential mitigation mechanisms of nitrapyrin and modified attapulgite with bacterial function intervention on bacterial communities were explored through incubation and field experiments. The results showed that as thiencarbazone-methyl·isoxaflutole application increased, the stress on soil bacterial community structure and diversity also increased. The relative abundance of bacteria including Aridibacter and GP7 and functional annotations including "nitrate_reduction" were significantly negatively correlated with thiencarbazone-methyl·isoxaflutole residues in soils. The remarkable toxic effects on the Adhaeribacter bacteria were detected at the recommended dose of thiencarbazone-methyl·isoxaflutole application. The residue of isoxaflutole (one of the effective ingredients of thiencarbazone-methyl·isoxaflutole) directly and more strongly affected the diversity of soil bacterial communities than thiencarbazone-methyl. Increasing soil pH was recognised as an important factor in improving the diversity and structure of soil microflora based on the results of the Mantel test and canonical correspondence analysis. Supplemental use of nitrapyrin or modified attapulgite was found to increase soil pH, and further improve the expression of "manganese oxidation" function annotation. This contributed to the increased bacterial diversity (Shannon index). Therefore, the disturbance of soil microflora caused by thiencarbazone-methyl·isoxaflutole application can be mitigated by the use of nitrapyrin and modified attapulgite through raising soil pH.

Keywords: Black soil; Herbicides; Maize production; Soil microflora; Toxic effects.

MeSH terms

  • Bacteria
  • Herbicides* / toxicity
  • Nitrification*
  • Soil

Substances

  • attapulgite
  • isoxaflutole
  • Herbicides
  • Soil