Chiral-Achiral Cations Intercalation Induced Lead-Free Chiral-Polar Hybrid Perovskites Enable Self-Powered X-Ray and Ultraviolet-Visible-Near-Infrared Photo Detection

Small. 2024 Mar;20(12):e2307454. doi: 10.1002/smll.202307454. Epub 2023 Nov 10.

Abstract

Lead halide hybrid perovskites have made great progress in direct X-ray detection and broadband photodetection, but the existence of toxic Pb and the demand for external operating voltage have severely limited their further applications and operational stability improvements. Therefore, exploring "green" lead-free hybrid perovskite that can both achieve X-ray detection and broadband photodetection without external voltage is of great importance, but remains severely challenging. Herein, using centrosymmetric (BZA)3BiI6 (1, BZA = benzylamine) as a template, a pair of chiral-polar lead-free perovskites, (BZA)2(R/S-PPA)BiI6 (2-R/S, R/S-PPA = (R/S)-1-Phenylpropylamine) are successfully obtained by introducing chiral aryl cations of (R/S)-1-Phenylpropylamine. Compared to 1, chiral-polar 2-R presents a significant irradiation-responsive bulk photovoltaic effect (BPVE) with an open circuit photovoltage of 0.4 V, which enables it with self-powered X-ray, UV-vis-NIR broadband photodetection. Specifically, 2-R device exhibits an ultralow detection limit of 18.5 nGy s-1 and excellent operational stability. Furthermore, 2-R as the first lead-free perovskite achieves significant broad-spectrum (377-940 nm) photodetection via light-induced pyroelectric effect. This work sheds light on the rational crystal reconstruction engineering and design of "green" hybrid perovskite toward high-demanded self-powered radiation detection and broadband photodetection.

Keywords: X‐ray and ultraviolet–visible–near‐infrared photodetection; chiral‐achiral cations intercalation; lead‐free chiral‐polar perovskites; light‐induced pyroelectric effect; self‐powered.