Climate warming enhances microbial network complexity by increasing bacterial diversity and fungal interaction strength in litter decomposition

Sci Total Environ. 2024 Jan 15:908:168444. doi: 10.1016/j.scitotenv.2023.168444. Epub 2023 Nov 8.

Abstract

Microbial communities are important drivers of plant litter decomposition; however, the mechanisms of microbial co-occurrence networks and their network interaction dynamics in response to climate warming in wetlands remain unclear. Here, we conducted a 1.5-year warming experiment on the bacterial and fungal communities involved in litter decomposition in a typical wetland. The results showed that warming accelerated the decomposition of litter and had a greater effect on the diversity of bacteria than on that of fungi. Dominant bacterial communities, such as Bacteroidia, Alphaproteobacteria, and Actinobacteria, and dominant fungal communities, such as Leotiomycetes and Sordariomycetes, showed significant positive correlations with lignin and cellulose. Co-occurrence networks revealed that the average path length and betweenness centrality under warming conditions increased in the bacterial community but decreased in the fungal community. Both bacterial and fungal networks in the 2.0 °C warming treatment had the highest ratio of positive links (58.53 % and 98.14 %), indicating that moderate warming can promote the positive correlations and symbiotic relationships observed in the microbial community. This also suggests that small-world characteristics and weak-link advantages accelerate diffusion, and scale-free features facilitate propagation in microbial communities in response to climate warming. Logistic growth and Lotka-Volterra competition models revealed that climate warming enhances microbial network complexity mainly by increasing bacterial diversity and fungal interaction strength in litter decomposition. However, the symbiotic relationship decreased slightly under 4.0 °C warming, indicating that climate warming is a random attack rather than a targeted attack, and the microbial network has strong resistance to random attack, as shown by the highly robust dynamic performance of the microbial network in litter decomposition. Overall, the microbial community in litter decomposition responded to climate warming and shifted its network interactions, leading to further changes in emergent network topology and dynamics, thus accelerating litter decomposition in wetlands.

Keywords: Climate warming; Litter decomposition; Microbial network complexity; Phase transition; Wetland; bacteria and fungi.

MeSH terms

  • Bacteria
  • Climate
  • Ecosystem*
  • Fungi
  • Microbiota*
  • Plant Leaves / microbiology
  • Soil Microbiology