Insights into the mechanism of SARS-CoV-2 main protease autocatalytic maturation from model precursors

Commun Biol. 2023 Nov 13;6(1):1159. doi: 10.1038/s42003-023-05469-8.

Abstract

A critical step for SARS-CoV-2 assembly and maturation involves the autoactivation of the main protease (MProWT) from precursor polyproteins. Upon expression, a model precursor of MProWT mediates its own release at its termini rapidly to yield a mature dimer. A construct with an E290A mutation within MPro exhibits time dependent autoprocessing of the accumulated precursor at the N-terminal nsp4/nsp5 site followed by the C-terminal nsp5/nsp6 cleavage. In contrast, a precursor containing E290A and R298A mutations (MProM) displays cleavage only at the nsp4/nsp5 site to yield an intermediate monomeric product, which is cleaved at the nsp5/nsp6 site only by MProWT. MProM and the catalytic domain (MPro1-199) fused to the truncated nsp4 region also show time-dependent conversion in vitro to produce MProM and MPro1-199, respectively. The reactions follow first-order kinetics indicating that the nsp4/nsp5 cleavage occurs via an intramolecular mechanism. These results support a mechanism involving an N-terminal intramolecular cleavage leading to an increase in the dimer population and followed by an intermolecular cleavage at the C-terminus. Thus, targeting the predominantly monomeric MPro precursor for inhibition may lead to the identification of potent drugs for treatment.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • COVID-19* / genetics
  • Coronavirus 3C Proteases / genetics
  • Humans
  • Mutation
  • SARS-CoV-2* / genetics

Substances

  • 3C-like proteinase, SARS-CoV-2
  • Coronavirus 3C Proteases