Comparative study of the steady-state subcellular distribution of lysosome-associated membrane glycoprotein-2 (LAMP-2) isoforms with GYXXΦ-type tyrosine-based motifs that interact differently with four adaptor protein (AP) complexes

J Biochem. 2024 Mar 4;175(3):275-287. doi: 10.1093/jb/mvad096.

Abstract

Lysosome-associated membrane protein-1 and -2 (LAMP-1 and LAMP-2, respectively) are type I transmembrane proteins. LAMP-2 comprises three splice isoforms (LAMP-2A, -B and-C) with different cytoplasmic tails (CTs). These three CTs possess different tyrosine-based motifs (GYXXΦ, where Φ is a bulky hydrophobic amino acid) at their C-termini. Interactions between tyrosine-based motifs and μ-subunits of four tetrameric adaptor protein (AP) complexes are necessary for their vesicular transport to lysosomes. Little is known about how the interaction strengths of these tyrosine motifs with μ-subunits affect the localization of isoforms to lysosomes. The interactions were first investigated using a yeast two-hybrid system to address this question. LAMP-2A-CT interacted with all four μ-subunits (μ1, μ2, μ3A and μ4 of AP-1, AP-2, AP-3 and AP-4, respectively). The interaction with μ3A was more robust than that with other μ-subunits. LAMP-2B-CT interacted exclusively and moderately with μ3A. LAMP-2C-CT did not detectably interact with any of the four μ-subunits. Immunofluorescence microscopy showed that all isoforms were localized in late endosomes and lysosomes. LAMP-2C was present in the plasma membrane and early endosomes; however, LAMP-2A and -2B were barely detectable in these organelles. In cell fractionation, LAMP-2A was the most abundant in the dense lysosomes, whereas LAMP-2C was significantly present in the low-density fraction containing the plasma membrane and early endosomes, in addition to the dense lysosomes. LAMP-2B considerably existed in the low-density late endosomal fraction. These data strongly suggest that the LAMP-2 isoforms are distributed differently in endocytic organelles depending on their interaction strengths with AP-3.

Keywords: adaptor protein complex; isoform; lysosome targeting; subcellular distribution; tyrosine-based motif.

MeSH terms

  • Adaptor Proteins, Signal Transducing
  • Amino Acids*
  • Lysosomes
  • Protein Isoforms / genetics
  • Transcription Factors
  • Tyrosine*

Substances

  • Tyrosine
  • Protein Isoforms
  • Amino Acids
  • Adaptor Proteins, Signal Transducing
  • Transcription Factors