Multi-layered maps of neuropil with segmentation-guided contrastive learning
- PMID: 37985712
- PMCID: PMC10703674
- DOI: 10.1038/s41592-023-02059-8
Multi-layered maps of neuropil with segmentation-guided contrastive learning
Abstract
Maps of the nervous system that identify individual cells along with their type, subcellular components and connectivity have the potential to elucidate fundamental organizational principles of neural circuits. Nanometer-resolution imaging of brain tissue provides the necessary raw data, but inferring cellular and subcellular annotation layers is challenging. We present segmentation-guided contrastive learning of representations (SegCLR), a self-supervised machine learning technique that produces representations of cells directly from 3D imagery and segmentations. When applied to volumes of human and mouse cortex, SegCLR enables accurate classification of cellular subcompartments and achieves performance equivalent to a supervised approach while requiring 400-fold fewer labeled examples. SegCLR also enables inference of cell types from fragments as small as 10 μm, which enhances the utility of volumes in which many neurites are truncated at boundaries. Finally, SegCLR enables exploration of layer 5 pyramidal cell subtypes and automated large-scale analysis of synaptic partners in mouse visual cortex.
© 2023. The Author(s).
Conflict of interest statement
S.D., P.H.L., M.J., J.M.-S. and V.J. are employees of Google LLC, which sells cloud computing services. The other authors declare no competing interests.
Figures
Similar articles
-
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.Med Image Anal. 2023 Jul;87:102792. doi: 10.1016/j.media.2023.102792. Epub 2023 Mar 11. Med Image Anal. 2023. PMID: 37054649
-
Light mixed-supervised segmentation for 3D medical image data.Med Phys. 2024 Jan;51(1):167-178. doi: 10.1002/mp.16816. Epub 2023 Nov 1. Med Phys. 2024. PMID: 37909833
-
SynapseCLR: Uncovering features of synapses in primary visual cortex through contrastive representation learning.Patterns (N Y). 2023 Mar 7;4(4):100693. doi: 10.1016/j.patter.2023.100693. eCollection 2023 Apr 14. Patterns (N Y). 2023. PMID: 37123442 Free PMC article.
-
Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation.Med Image Anal. 2023 Jan;83:102656. doi: 10.1016/j.media.2022.102656. Epub 2022 Oct 17. Med Image Anal. 2023. PMID: 36327656
-
3D structural imaging of the brain with photons and electrons.Curr Opin Neurobiol. 2008 Dec;18(6):633-41. doi: 10.1016/j.conb.2009.03.005. Epub 2009 Apr 9. Curr Opin Neurobiol. 2008. PMID: 19361979 Review.
Cited by
-
CODI: Enhancing machine learning-based molecular profiling through contextual out-of-distribution integration.PNAS Nexus. 2024 Oct 15;3(10):pgae449. doi: 10.1093/pnasnexus/pgae449. eCollection 2024 Oct. PNAS Nexus. 2024. PMID: 39440022 Free PMC article.
-
Multiplexed volumetric CLEM enabled by scFvs provides insights into the cytology of cerebellar cortex.Nat Commun. 2024 Aug 5;15(1):6648. doi: 10.1038/s41467-024-50411-z. Nat Commun. 2024. PMID: 39103318 Free PMC article.
-
SyConn2: dense synaptic connectivity inference for volume electron microscopy.Nat Methods. 2022 Nov;19(11):1367-1370. doi: 10.1038/s41592-022-01624-x. Epub 2022 Oct 24. Nat Methods. 2022. PMID: 36280715 Free PMC article.
-
Multiplexed volumetric CLEM enabled by antibody derivatives provides new insights into the cytology of the mouse cerebellar cortex.Res Sq [Preprint]. 2023 Jul 6:rs.3.rs-3121892. doi: 10.21203/rs.3.rs-3121892/v1. Res Sq. 2023. Update in: Nat Commun. 2024 Aug 5;15(1):6648. doi: 10.1038/s41467-024-50411-z PMID: 37461609 Free PMC article. Updated. Preprint.
-
CAVE: Connectome Annotation Versioning Engine.bioRxiv [Preprint]. 2023 Jul 28:2023.07.26.550598. doi: 10.1101/2023.07.26.550598. bioRxiv. 2023. PMID: 37546753 Free PMC article. Preprint.
References
-
- Ascoli GA, Donohue DE, Halavi M. NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci. 2007;27:9247–9251. doi: 10.1523/JNEUROSCI.2055-07.2007. - DOI - PMC - PubMed
-
- Kandel, E. R., Jessell, T. M. & Siegelbaum, S. A. Principles of Neural Science 6th edn (McGraw Hill Professional, 2021).
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
