Phosphine-NHC-Phosphonium Ylide Pincer Ligand: Complexation with Pd(II) and Unconventional P-Coordination of the Ylide Moiety

Inorg Chem. 2023 Dec 11;62(49):20129-20141. doi: 10.1021/acs.inorgchem.3c03025. Epub 2023 Nov 23.

Abstract

An efficient synthesis of two pincer preligands [Ph2PCH(R)ImCH2CH2CH2PPh3]X2 (R = H, X = OTf; R = Ph, X = BF4) was developed. Subsequent reactions with PdCl2 and an excess of Cs2CO3 led to the formation of highly stable cationic ortho-metalated Pd(II) complexes [(P,C,C,C)Pd]X exhibiting phosphine, NHC, phosphonium ylide, and σ-aryl donor extremities. The protonation of one of the latter complexes with R = H affords the Pd(II) complex [(P,C,C)Pd(MeCN)](OTf)2 bearing an unprecedented nonsymmetrical NHC core pincer scaffold with a 5,6-chelating framework. The overall donor properties of this phosphine-NHC-phosphonium ylide ligand were estimated using the experimental νCN stretching frequency in the corresponding [(P,C,C)Pd(CNtBu](OTf)2 derivative and were shown to be competitive with the related bis(NHC)-phosphonium ylide and phenoxy-NHC-phosphonium ylide pincers. The presence of a phenyl substituent in the bridge between phosphine and NHC moieties in the ortho-metalated complex [(P,C,C,C)Pd](BF4) makes possible the deprotonation of this position using LDA to provide a persistent zwitterionic complex [(P,C,C,C)Pd] featuring a rare P-coordinated phosphonium ylide moiety in addition to a conventional C-coordinated one. The comparison of the 31P and 13C NMR data for these C- and P-bound phosphonium ylide fragments within the same molecule was performed for the first time, and the bonding situation in both cases was studied in detail by QTAIM and ELF topological analyses.