Functional Load Capacity of Teeth with Reduced Periodontal Support: A Finite Element Analysis

Bioengineering (Basel). 2023 Nov 18;10(11):1330. doi: 10.3390/bioengineering10111330.

Abstract

The purpose of this study was to investigate the functional load capacity of the periodontal ligament (PDL) in a full arch maxilla and mandible model using a numerical simulation. The goal was to determine the functional load pattern in multi- and single-rooted teeth with full and reduced periodontal support. CBCT data were used to create 3D models of a maxilla and mandible. The DICOM dataset was used to create a CAD model. For a precise description of the surfaces of each structure (enamel, dentin, cementum, pulp, PDL, gingiva, bone), each tooth was segmented separately, and the biomechanical characteristics were considered. Finite Element Analysis (FEA) software computed the biomechanical behavior of the stepwise increased force of 700 N in the cranial and 350 N in the ventral direction of the muscle approach of the masseter muscle. The periodontal attachment (cementum-PDL-bone contact) was subsequently reduced in 1 mm increments, and the simulation was repeated. Quantitative (pressure, tension, and deformation) and qualitative (color-coded images) data were recorded and descriptively analyzed. The teeth with the highest load capacities were the upper and lower molars (0.4-0.6 MPa), followed by the premolars (0.4-0.5 MPa) and canines (0.3-0.4 MPa) when vertically loaded. Qualitative data showed that the areas with the highest stress in the PDL were single-rooted teeth in the cervical and apical area and molars in the cervical and apical area in addition to the furcation roof. In both single- and multi-rooted teeth, the gradual reduction in bone levels caused an increase in the load on the remaining PDL. Cervical and apical areas, as well as the furcation roof, are the zones with the highest functional stress. The greater the bone loss, the higher the mechanical load on the residual periodontal supporting structures.

Keywords: attachment loss; bone loss; finite element analysis; mandible; maxilla; periodontium; teeth.

Grants and funding

This research received no external funding.