Cylicins are testis-specific proteins, which are exclusively expressed during spermiogenesis. In mice and humans, two Cylicins, the gonosomal X-linked Cylicin 1 (Cylc1/CYLC1) and the autosomal Cylicin 2 (Cylc2/CYLC2) genes, have been identified. Cylicins are cytoskeletal proteins with an overall positive charge due to lysine-rich repeats. While Cylicins have been localized in the acrosomal region of round spermatids, they resemble a major component of the calyx within the perinuclear theca at the posterior part of mature sperm nuclei. However, the role of Cylicins during spermiogenesis has not yet been investigated. Here, we applied CRISPR/Cas9-mediated gene editing in zygotes to establish Cylc1- and Cylc2-deficient mouse lines as a model to study the function of these proteins. Cylc1 deficiency resulted in male subfertility, whereas Cylc2-/-, Cylc1-/yCylc2+/-, and Cylc1-/yCylc2-/- males were infertile. Phenotypical characterization revealed that loss of Cylicins prevents proper calyx assembly during spermiogenesis. This results in decreased epididymal sperm counts, impaired shedding of excess cytoplasm, and severe structural malformations, ultimately resulting in impaired sperm motility. Furthermore, exome sequencing identified an infertile man with a hemizygous variant in CYLC1 and a heterozygous variant in CYLC2, displaying morphological abnormalities of the sperm including the absence of the acrosome. Thus, our study highlights the relevance and importance of Cylicins for spermiogenic remodeling and male fertility in human and mouse, and provides the basis for further studies on unraveling the complex molecular interactions between perinuclear theca proteins required during spermiogenesis.
Keywords: Cylicin; calyx; cell biology; developmental biology; human; male infertility; manchette; mouse; perinuclear theca; sperm.
Male humans, mice and other animals produce sex cells known as sperm that seek out and fertilize egg cells from females. Sperm have a very distinctive shape with a head and a long tail that enables them to swim towards an egg. At the front of the sperm’s head is a pointed structure known as the acrosome that helps the sperm to burrow into an egg cell. A structure known as the cytoskeleton is responsible for forming and maintaining the shape of acrosomes and other parts of cells. Two proteins, known as Cylicin 1 and Cylicin 2, are unique to the cytoskeleton of sperm, but their roles remain unclear. To investigate the role of the Cylicins during spermiogenesis, Schneider, Kovacevic et al. used an approach called CRISPR/Cas9-mediated gene-editing to generate mutant mice that were unable to produce either Cylicin 1 or Cylicin 2, or both proteins. The experiments found that healthy female mice were less likely to become pregnant when they mated with mutant males that lacked Cylicin 1 compared with males that had the protein. When they did become pregnant, the females had smaller litters of babies. Mutant male mice lacking Cylicin 2 or both Cylicin proteins (so-called “double” mutants), were infertile and mating with healthy female mice did not lead to any pregnancies. Further experiments found that the sperm of such mice had smaller heads than normal sperm, defective acrosomes, and curled tails that wrapped around the head. Schneider, Kovacevic et al. also examined the sperm of a human patient who had inherited genetic variants in the genes encoding both Cylicin proteins. Similar to the double mutant mice, the patient was infertile, and his sperm also had defective acrosomes and curled tails. These findings indicate that Cylicins are required to make the acrosome as sperm cells mature and help maintain the structure of the cytoskeleton of sperm. Further studies of Cylicins and other sperm proteins in mice may help us to understand some of the factors that contribute to male infertility in humans.
© 2023, Schneider, Kovacevic et al.