A novel tumor purity and immune infiltration-related model for predicting distant metastasis-free survival in prostate cancer

Eur J Med Res. 2023 Nov 28;28(1):545. doi: 10.1186/s40001-023-01522-8.

Abstract

Background: umor cells, immune cells and stromal cells jointly modify tumor development and progression. We aim to explore the potential effects of tumor purity on the immune microenvironment, genetic landscape and prognosis in prostate cancer (PCa).

Methods: Tumor purity of prostate cancer patients was extracted from The cancer genome atlas (TCGA). Immune cellular proportions were calculated by the CIBERSORT. To identify critical modules related to tumor purity, we used weighted gene co-expression network analysis (WGCNA). Using STRING and Cytoscape, protein-protein interaction (PPI) networks were constructed and analyzed. A Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Disease Ontology (DO), and Gene Set Enrichment Analysis (GSEA) enrichment analysis of identified modules was conducted. To identify the expression of key genes at protein levels, we used the Human Protein Atlas (HPA) platform.

Results: A model of tumor purity score (TPS) was constructed in the gene expression omnibus series (GSE) 116,918 cohort. TCGA cohort served as a validation set and was employed to validate the TPS. TPS model, as an independent prognostic factor of distant metastasis-free survival (DMFS) in PCa. Patients had higher tumor purity and better prognosis in the low-TPS group. Tumor purity was related to the infiltration of mast cells and macrophage cells positively, whereas related to the infiltration of dendritic cells, T cells and B cells negatively in PCa. The nomogram based on TPS, Age, Gleason score and T stage had a good predictive value and could evaluate the prognosis of PCa metastasis. GO and KEGG enrichment analyses showed that hub genes mainly participate in T cell activation and T-helper lymphocytes (TH) differentiation. Hub genes were mainly enriched in primary immunodeficiency disease, according to DO analysis. SLAMF8 was identified as the most critical gene by Cytoscape and HPA analysis.

Conclusions: Dynamic changes in the immune microenvironment associated with tumor purity could correlate with a poor DMFS of low-purity PCa. The TPS can predict the DMFS of PCa. In addition, prostate cancer metastases may be related to immunosuppression caused by a disorder of the immune microenvironment.

Keywords: Distant metastasis-free survival; Immune infiltration; Nomogram; Prostate cancer; Tumor purity.

MeSH terms

  • Cell Differentiation
  • Gene Expression Profiling
  • Gene Ontology
  • Humans
  • Lymphocyte Activation
  • Male
  • Prostatic Neoplasms* / genetics
  • Signaling Lymphocytic Activation Molecule Family
  • Tumor Microenvironment / genetics

Substances

  • SLAMF8 protein, human
  • Signaling Lymphocytic Activation Molecule Family