Inflammation during pregnancy can induce neurodevelopmental changes that affect the neurological health of offspring. Elevated levels of circulating inflammatory cytokines have been shown to decrease nocturnal melatonin synthesis by the pineal gland, potentially impacting fetal development. This study aimed to assess the effects of LPS-induced inflammation on melatonin concentrations in the plasma of pregnant female rats and explore resulting neurochemical and behavioral changes in their offspring. Our findings revealed that pregnant rats injected with LPS experienced decreased nocturnal melatonin levels in their plasma, with an increase in diurnal melatonin content. The offspring exhibited reduced performance in tests evaluating motor coordination and spatial memory compared to control subjects. Immunohistochemical analysis indicated a decline in calbindin immunoreactivity in Purkinje cells in the cerebellum. Additionally, the hippocampus displayed an increase in IBA-1 and calretinin expression, coupled with a reduction in parvalbumin expression in the offspring of the LPS group. Collectively, this study provides compelling evidence that an inflammatory state can lead to a reduction in melatonin synthesis in pregnant females, potentially impacting the neurodevelopment of offspring, including neuronal, glial, motor, and cognitive aspects. Subsequent studies will further elucidate the mechanisms underlying inflammation-induced maternal melatonin reduction and its impact on offspring neurodevelopment.
Keywords: Cerebellum; Hippocampus; Learning; Neurodevelopment; Neuroinflammation.
Copyright © 2023 Elsevier B.V. All rights reserved.