Processing stimulus dynamics by the NF-κB network in single cells

Exp Mol Med. 2023 Dec;55(12):2531-2540. doi: 10.1038/s12276-023-01133-7. Epub 2023 Dec 1.

Abstract

Cells at the site of an infection experience numerous biochemical signals that vary in amplitude, space, and time. Despite the diversity of dynamic signals produced by pathogens and sentinel cells, information-processing pathways converge on a limited number of central signaling nodes to ultimately control cellular responses. In particular, the NF-κB pathway responds to dozens of signals from pathogens and self, and plays a vital role in processing proinflammatory inputs. Studies addressing the influence of stimulus dynamics on NF-κB signaling are rare due to technical limitations with live-cell measurements. However, recent advances in microfluidics, automation, and image analysis have enabled investigations that yield high temporal resolution at the single-cell level. Here, we summarize the recent research which measures and models the NF-κB response to pulsatile and fluctuating stimulus concentrations, as well as different combinations and sequences of signaling molecules. Collectively, these studies show that the NF-κB network integrates external inflammatory signals and translates these into downstream transcriptional responses.

Publication types

  • Review
  • Research Support, N.I.H., Extramural

MeSH terms

  • NF-kappa B* / metabolism
  • Signal Transduction* / physiology

Substances

  • NF-kappa B