Gene therapy for primary myopathies: literature review and prospects

Arch Pediatr. 2023 Nov;30(8S1):8S18-8S23. doi: 10.1016/S0929-693X(23)00223-3.


Gene therapy has emerged as a promising frontier in the pursuit of effective treatments for primary myopathies. This scientific review explores the application of viral vectors and more specifically of recombinant adeno-associated virus (rAAV) vectors as a potent gene delivery tool in the context of primary myopathies, highlighting its transformative potential. Focusing on primary myopathies, including Duchenne muscular dystrophy (DMD), limb-girdle muscular dystrophies (LGMDs), X-linked myotubular myopathy (XLMTM), and Pompe disease, we review the ongoing pre-clinical and clinical trials that underscore the therapeutic promise of rAAV-based gene therapies. Recent developments in gene therapy have unveiled innovative gene transfer approaches, particularly with rAAV vectors. These vectors offer a well-tolerated and efficient means of delivering corrective genetic material to diseased muscles, thereby addressing the root causes of primary myopathies. Encouraging data from pre-clinical studies and early clinical trials have demonstrated the potential to ameliorate muscle function, reduce pathological manifestations, and enhance the quality of life for patients afflicted with these devastating diseases. However, the transition from bench to bedside is not without challenges. This review emphasizes the critical need for a comprehensive risk management strategy to better handle potential side effects and immune responses associated with gene therapy. As the field of gene therapy for primary myopathies is advancing, it is imperative to refine and optimize safety measures, ensuring that the transformative potential of these therapies is realized while the risks are minimized. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.

Keywords: Gene therapy; Gene transfer; Innovative treatments; Primary myopathies; rAAV.

Publication types

  • Review

MeSH terms

  • Child
  • Gene Transfer Techniques
  • Genetic Therapy
  • Genetic Vectors
  • Humans
  • Muscular Dystrophy, Duchenne*
  • Quality of Life*