A Preliminary Investigation into the Frequency Dose Effects of High-Intensity Functional Training on Cardiometabolic Health

J Sports Sci Med. 2023 Dec 1;22(4):688-699. doi: 10.52082/jssm.2023.688. eCollection 2023 Dec.

Abstract

The objective of this study was to explore the effects of three weekly frequency doses of high-intensity functional training (HIFT) on an array of cardiometabolic markers in adults with metabolic syndrome (MetS). Twenty-one men and women, randomized into one (HIFT1), two (HIFT2), or three (HIFT3) days per week of HIFT, completed 3-weeks of familiarization plus a 12-week progressive training program. Pre- and post-intervention, several cardiometabolic, body composition, oxygen consumption, metabolic syndrome severity, and perceptions of fitness measurements were assessed. Additionally, an exercise enjoyment survey was administered post-intervention. A Cohen's d was used to demonstrate within-group change effect size. Although this study was not fully powered, a one-way and two-way ANOVA were used to compare the dose groups to provide provisional insights. No differences were found when frequency dose groups were compared. Many cardiometabolic, body composition, and fitness improvements were seen within each group, with clinically meaningful improvements in the metabolic syndrome severity score (MSSS) (HIFT1: -0.105, d = 0.28; HIFT2: -0.382, d = 1.20; HIFT3: -0.467, d = 1.07), waist circumference (HIFT1: -4.1cm, d = 3.33; HIFT2: -5.4cm, d = 0.89; HIFT3: -0.7cm, d = 0.20), and blood glucose (HIFT1: -9.5mg/dL, d = 0.98; HIFT2: -4.9mg/dL, d = 1.00; HIFT3: -1.7mg/dL, d = 0.23). All three groups similarly reported high exercise enjoyment and likeliness to continue after the intervention. In conclusion, HIFT performed once, twice, or thrice a week elicits improvements in MetS and is considered enjoyable. HIFT, even at a low weekly dose, therefore represents a potential strategy to reduce the global MetS burden.

Keywords: Insulin; Lipids; Metabolic Syndrome; Ventilatory Threshold.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Analysis of Variance
  • Cardiovascular Diseases*
  • Female
  • High-Intensity Interval Training*
  • Humans
  • Male
  • Metabolic Syndrome* / prevention & control
  • Pleasure