T1-Weighted, Dynamic Contrast-Enhanced MR Perfusion Imaging Can Differentiate between Treatment Success and Failure in Spine Metastases Undergoing Radiation Therapy

AJNR Am J Neuroradiol. 2023 Dec 11;44(12):1451-1457. doi: 10.3174/ajnr.A8057.

Abstract

Background and purpose: Current imaging techniques have difficulty differentiating treatment success and failure in spinal metastases undergoing radiation therapy. This study investigated the correlation between changes in dynamic contrast-enhanced MR imaging perfusion parameters and clinical outcomes following radiation therapy for spinal metastases. We hypothesized that perfusion parameters will outperform traditional size measurements in discriminating treatment success and failure.

Materials and methods: This retrospective study included 49 patients (mean age, 63 [SD, 13] years; 29 men) with metastatic lesions treated with radiation therapy who underwent dynamic contrast-enhanced MR imaging. The median time between radiation therapy and follow-up dynamic contrast-enhanced MR imaging was 62 days. We divided patients into 2 groups: clinical success (n = 38) and failure (n = 11). Failure was defined as PET recurrence (n = 5), biopsy-proved (n = 1) recurrence, or an increase in tumor size (n = 7), while their absence defined clinical success. A Mann-Whitney U test was performed to assess differences between groups.

Results: The reduction in plasma volume was greater in the success group than in the failure group (-57.3% versus +88.2%, respectively; P < .001). When we assessed the success of treatment, the sensitivity of plasma volume was 91% (10 of 11; 95% CI, 82%-97%) and the specificity was 87% (33 of 38; 95% CI, 73%-94%). The sensitivity of size measurements was 82% (9 of 11; 95% CI, 67%-90%) and the specificity was 47% (18 of 38; 95% CI, 37%-67%).

Conclusions: The specificity of plasma volume was higher than that of conventional size measurements, suggesting that dynamic contrast-enhanced MR imaging is a powerful tool to discriminate between treatment success and failure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Brain Neoplasms* / pathology
  • Contrast Media
  • Humans
  • Magnetic Resonance Imaging / methods
  • Male
  • Middle Aged
  • Perfusion Imaging
  • Retrospective Studies
  • Sensitivity and Specificity
  • Spinal Neoplasms* / diagnostic imaging
  • Spinal Neoplasms* / pathology
  • Spinal Neoplasms* / radiotherapy

Substances

  • Contrast Media