Diagnostic workup of cancer patients is highly reliant on the science of pathology using cytopathology, histopathology, and other ancillary techniques like immunohistochemistry and molecular cytogenetics. Data processing and learning by means of artificial intelligence (AI) has become a spearhead for the advancement of medicine, with pathology and laboratory medicine being no exceptions. ChatGPT, an artificial intelligence (AI)-based chatbot, that was recently launched by OpenAI, is currently a talk of the town, and its role in cancer diagnosis is also being explored meticulously. Pathology workflow by integration of digital slides, implementation of advanced algorithms, and computer-aided diagnostic techniques extend the frontiers of the pathologist's view beyond a microscopic slide and enables effective integration, assimilation, and utilization of knowledge that is beyond human limits and boundaries. Despite of it's numerous advantages in the pathological diagnosis of cancer, it comes with several challenges like integration of digital slides with input language parameters, problems of bias, and legal issues which have to be addressed and worked up soon so that we as a pathologists diagnosing malignancies are on the same band wagon and don't miss the train.
Keywords: AI; Cancer diagnosis; ChatGPT; Image analysis and integration; Pathology.
Copyright © 2023 Elsevier GmbH. All rights reserved.