Screening and verification of hemostatic effective components group of Panax Notoginseng based on spectrum-effect relationships

J Ethnopharmacol. 2024 Mar 1:321:117539. doi: 10.1016/j.jep.2023.117539. Epub 2023 Dec 7.

Abstract

Ethnopharmacological relevance: Panax Notoginseng (PN) can disperse blood stasis, hemostasis, and detumescence analgesic, which can be used for hemoptysis, hematemesis and another traumatic bleeding, and it is known as "A miracle hemostatic medicine". Studies show that the chemical composition of PN is relatively comprehensive, however, its hemostatic active ingredients have not been fully clarified.

Aim of study: This study aimed to clarify the hemostatic effective components group (HECG) of PN, provide a foundation for the assessment of PN's quality and its comprehensive development, and for further studies on the pharmacodynamic material basis of other Traditional Chinese Medicines (TCMs).

Materials and methods: UPLC-MS was used to establish the fingerprint and identify the common peaks in 44 batches of PN extracts (PNE). In addition, the plasma recalcification time and in vitro coagulation time were measured. For spectrum-effect analysis, bivariate correlation analysis (BCA) and partial least squares regression analysis (PLSR) were used to screen the hemostasis candidate active monomers of PN. The monomers were prepared by combining several preparative chromatography techniques. The efficacy was verified by plasma recalcification time, in vitro coagulation time, and a rat model of gastric hemorrhage.

Results: A total of 30 common peaks and hemostatic efficacy indexes of 44 batches of PNE were obtained. A total of 18 components were positively correlated with the comprehensive coagulation index by two statistical methods. Six and eleven monomers were obtained respectively by chromatographic preparation and procurement, and one monomer was eliminated due to preparation difficulty and other reasons. Seven active monomers with direct hemostatic effect and one active monomer with synergistic hemostatic effect were screened through plasma recalcification time, and their combinations were used as candidate HECG for hemostatic effect verification. The results of in vitro experiments showed that plasma recalcification time and in vitro coagulation time were significantly reduced (P < 0.05) in the HECG group, compared to the PNE group. The results of in vivo experiment also indicated that the hemostatic effect of HECG was comparable to that of PNE and PN powder.

Conclusion: The composition and efficacy of the HECG of PN were screened and verified using the spectral correlation method and in vivo and in vitro efficacy verification; the HECG included Dencichine, Ginsenoside Rg1, Ginsenoside Rd, Ginsenoside Rh1, Ginsenoside F1, Notoginsenoside R1, Notoginsenoside Ft1 and Notoginsenoside Fe. These results laid a foundation for the quality evaluation of PN and provided a reference for the basic research of pharmacodynamic material basis of other TCMs.

Keywords: Effective components group; Hemostatasis; Panax notoginseng; Spectrum-effect relationships; UPLC-Q-exective-orbitrap-MS.

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid / methods
  • Chromatography, Liquid
  • Ginsenosides* / pharmacology
  • Hemostasis
  • Hemostatics* / pharmacology
  • Panax notoginseng* / chemistry
  • Panax* / chemistry
  • Rats
  • Saponins* / pharmacology
  • Tandem Mass Spectrometry

Substances

  • Ginsenosides
  • Hemostatics
  • Saponins