Comparative Analysis of CT Texture in Lumbar and Femur and Its Correlation with Bone Mineral Density and Content over Time: An Exploratory Study

Diagnostics (Basel). 2023 Dec 3;13(23):3588. doi: 10.3390/diagnostics13233588.

Abstract

Background: This research explores the application of morphometric texture analysis in chest Computed Tomography (CT) scans for determining Bone Mineral Content (BMC) and its temporal changes, both crucial in diagnosing osteoporosis. The study establishes an innovative approach to osteoporosis screening by leveraging Hounsfield Units (HUs) in CT scans to evaluate BMC, offering a comparison with dual-energy X-ray absorptiometry (DXA)-based BMC.

Methods: A total of 806 instances (encompassing 379 individuals) were meticulously compiled from a sole institution, during the period stretching from 6 May 2012 to 30 June 2020. In this detailed analysis, each participant was subjected to a pair of chest CT scans, sequentially pursued by a DXA scan, spread over two years. Focused records of BMC values at the inaugural lumbar vertebra (L1) were secured from both the DXA and CT axial slices across all instances. A meticulous selection process pinpointed the largest trabecular section from the L1 vertebral body, whereupon 45 distinctive texture attributes were harvested utilizing gray-level co-occurrence matrix methodologies. Utilizing these amassed 45 attributes, a regression architecture was devised, aiming to forecast the precise BMC values individually. Moreover, an alternative regression framework was engaged, leveraging 90 distinct features, to gauge the BMC fluctuations observed between the duo of scans administered to each participant.

Results: The precision of the cultivated regression frameworks was scrupulously assessed, benchmarking against the correlation coefficient (CC) and the mean absolute deviation (MAE) in comparison to the DXA-established references. The regression apparatus employed for estimating BMC unveiled a CC of 0.754 and an MAE of 1.641 (g), respectively. Conversely, the regression mechanism devoted to discerning the variations in BMC manifested a CC of 0.680, coupled with an MAE of 0.528 (g), respectively.

Conclusion: The innovative methodology utilizing morphometric texture analysis in CT HUs offers an indirect, yet promising, approach for osteoporosis screening by providing estimations of BMC and its temporal changes. The estimations demonstrate moderate positive correlations with DXA measures, suggesting a potential alternative in circumstances where DXA scanning is limited.

Keywords: Bone Mineral Content (BMC); Computed Tomography Hounsfield Unit (CT HU); dual-energy X-ray absorptiometry (DXA); linear regression; morphometric texture analysis.

Grants and funding

This research received no external funding.