Enhancing c-Si Solar Cell Efficiency in the UV Region: Photophysical Insights into the Use of Eu3+ Complexes for Down-Shifting Layer Applications

Molecules. 2023 Dec 4;28(23):7924. doi: 10.3390/molecules28237924.

Abstract

[Eu(3DPIQC)3] (where DPIQC = 3-(diphenyl phosphoryl)-1-isoquinolinecarboxylate), a luminescent europium complex with antenna ligands, has been carefully embedded within a polyvinyl butyral (PVB) matrix and the resulting material was used to prepare films used as luminescent down-shifting layers (LDSLs) for crystalline Si-based solar cells. The films were characterized using photoluminescence spectroscopy, atomic force spectroscopy (AFM), UV-Vis spectroscopy, and fluorescence microscopy. The AFM analysis shows films with low surface roughness, while fluorescence microscopy revealed that the Eu complex embedded in PVB assumed a spheroidal configuration, a morphology especially beneficial for optical applications. The so-obtained LDSLs were utilized as energy converters in c-Si solar cells to enhance the utilization of high-energy photons, thereby improving their overall efficiency. The determination of photovoltaic parameters carried out before and after the deposition of the LDSLs on the c-Si cells confirms a positive effect on the efficiency of the cell. The Jsc increases from 121.6 mA/cm2 to 124.9 mA/cm2, and the open circuit voltage (Voc) is found to be unrelated to the complex concentration in the films. The fill factor (FF) remains constant with the Eu concentration. The EQE curves indicate an enhancement in the performance of the photovoltaic cells within the UV region of the spectrum for all coated devices. Electrochemical impedance spectroscopy (EIS) was also carried out in order to analyze the effect of the Eu complex in the charge transfer process of the devices.

Keywords: c-Si solar cell; europium complex; luminescent down-shifting layer; synthesis and characterization methods for optoelectronic materials.