iGenSig-Rx: an integral genomic signature based white-box tool for modeling cancer therapeutic responses using multi-omics data

Res Sq [Preprint]. 2023 Nov 30:rs.3.rs-3649238. doi: 10.21203/rs.3.rs-3649238/v1.

Abstract

Multi-omics sequencing is expected to become clinically routine within the next decade and transform clinical care. However, there is a paucity of viable and interpretable genome-wide modeling methods that can facilitate rational selection of patients for tailored intervention. Here we develop an integral genomic signature-based method called iGenSig-Rx as a white-box tool for modeling therapeutic response based on clinical trial datasets with improved cross-dataset applicability and tolerance to sequencing bias. This method leverages high-dimensional redundant genomic features to address the challenges of cross-dataset modeling, a concept similar to the use of redundant steel rods to reinforce the pillars of a building. Using genomic datasets for HER2 targeted therapies, the iGenSig-Rx model demonstrates stable predictive power across four independent clinical trials. More importantly, the iGenSig-Rx model offers the level of transparency much needed for clinical application, allowing for clear explanations as to how the predictions are produced, how the features contribute to the prediction, and what are the key underlying pathways. We expect that iGenSig-Rx as a class of biologically interpretable multi-omics modeling methods will have broad applications in big-data based precision oncology. The R package is available: https://github.com/wangxlab/iGenSig-Rx. NOTE: the Github website will be released upon publication and the R package is available for review through google drive: https://drive.google.com/drive/folders/1KgecmUoon9-h2Dg1rPCyEGFPOp28Ols3?usp=sharing.

Publication types

  • Preprint