Ryanodine receptor 2 inhibition reduces dispersion of cardiac repolarization, improves contractile function, and prevents sudden arrhythmic death in failing hearts

Elife. 2023 Dec 11:12:RP88638. doi: 10.7554/eLife.88638.

Abstract

Sudden cardiac death (SCD) from ventricular tachycardia/fibrillation (VT/VF) is a leading cause of death, but current therapies are limited. Despite extensive research on drugs targeting sarcolemmal ion channels, none have proven sufficiently effective for preventing SCD. Sarcoplasmic ryanodine receptor 2 (RyR2) Ca2+ release channels, the downstream effectors of sarcolemmal ion channels, are underexplored in this context. Recent evidence implicates reactive oxygen species (ROS)-mediated oxidation and hyperactivity of RyR2s in the pathophysiology of SCD. We tested the hypothesis that RyR2 inhibition of failing arrhythmogenic hearts reduces sarcoplasmic Ca2+ leak and repolarization lability, mitigates VT/VF/SCD and improves contractile function. We used a guinea pig model that replicates key clinical aspects of human nonischemic HF, such as a prolonged QT interval, a high prevalence of spontaneous arrhythmic SCD, and profound Ca2+ leak via a hyperactive RyR2. HF animals were randomized to receive dantrolene (DS) or placebo in early or chronic HF. We assessed the incidence of VT/VF and SCD (primary outcome), ECG heart rate and QT variability, echocardiographic left ventricular (LV) structure and function, immunohistochemical LV fibrosis, and sarcoplasmic RyR2 oxidation. DS treatment prevented VT/VF and SCD by decreasing dispersion of repolarization and ventricular arrhythmias. Compared to placebo, DS lowered resting heart rate, preserved chronotropic competency during transient β-adrenergic challenge, and improved heart rate variability and cardiac function. Inhibition of RyR2 hyperactivity with dantrolene mitigates the vicious cycle of sarcoplasmic Ca2+ leak-induced increases in diastolic Ca2+ and ROS-mediated RyR2 oxidation, thereby reducing repolarization lability and protecting against VT/VF/SCD. Moreover, the consequent increase in sarcoplasmic Ca2+ load improves contractile function. These potentially life-saving effects of RyR2 inhibition warrant further investigation, such as clinical studies of repurposing dantrolene as a potential new therapy for heart failure and/or SCD.

Keywords: cavia porcellus; guinea pig; medicine; murine.

Plain language summary

Each year, more than 300,000 people experience cardiac arrest or sudden cardiac death. Sudden cardiac death is caused by irregular heartbeats known as ventricular tachycardia or ventricular fibrillation, which prevent the heart from pumping blood. During a regular heart rhythm, the heart muscles contract and relax, regulated by a coordinated rise and fall of calcium ions within heart cells. In the cells of diseased hearts, on the other hand, calcium leaks out of a compartment known as the sarcoplasmic reticulum in an uncontrolled manner. This happens because an ion channel in the membrane of the sarcoplasmic reticulum known as ryanodine receptor 2 becomes hyperactive and releases calcium in an uncontrolled manner. This abnormal calcium release leads to irregular calcium waves, which can make the heart’s electrical properties unstable, causing ventricular tachycardia, ventricular fibrillation and sudden cardiac death. Joshi et al. tested whether dantrolene, a molecule that blocks ryanodine receptor 2, can stop calcium leaks from the sarcoplasmic reticulum and prevent lethal arrhythmias and sudden cardiac death in failing hearts. To investigate this, Joshi et al. induced heart failure in guinea pigs that have abnormal heart calcium signalling similar to human heart failure, and then treated the animals with either dantrolene or a placebo. The results indicate that blocking ryanodine receptor 2 hyperactivity with dantrolene prevents lethal arrhythmias and sudden cardiac death by blocking calcium leaks and by preventing the instability of the electrical properties of the heart. Additionally, Joshi et al. found that dantrolene also improved the diseased heart’s ability to pump adequate amounts of blood, allowing failing hearts to meet increased cardiovascular demands, and thereby improving the heart’s overall function. The proposed studies come from a strong clinical need to improve bad outcomes in people who keep having fatal heart rhythm episodes despite getting the best medical care. Many heart failure patients are plagued by recurrent defibrillator shocks to abort sudden cardiac death from relentless lethal heart rhythms. These shocks are painful, injure the heart, and worsen the quality of life. Unfortunately, management options are extremely limited for these patients. The findings of Joshi et al. indicate that dantrolene may be a potential treatment for people with fatal heart rhythms who are at risk of sudden cardiac death and could have a positive impact on these people’s quality of life. However, before this can happen, dantrolene will first have to be thoroughly tested to ensure effectivity and safety in humans. In any case, Joshi et al. have opened a new avenue in the search for medications to treat deadly arrhythmias and sudden cardiac death.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Animals
  • Arrhythmias, Cardiac / complications
  • Arrhythmias, Cardiac / drug therapy
  • Calcium / metabolism
  • Dantrolene / pharmacology
  • Dantrolene / therapeutic use
  • Death, Sudden, Cardiac / etiology
  • Death, Sudden, Cardiac / prevention & control
  • Guinea Pigs
  • Heart Failure* / complications
  • Heart Failure* / drug therapy
  • Humans
  • Myocytes, Cardiac / metabolism
  • Reactive Oxygen Species
  • Ryanodine Receptor Calcium Release Channel
  • Tachycardia, Ventricular*

Substances

  • Ryanodine Receptor Calcium Release Channel
  • Dantrolene
  • Reactive Oxygen Species
  • Calcium