A Multivariate Method for Estimating and comparing whole brain functional connectomes from fMRI and PET data

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10340631.

Abstract

Positron emission tomography (PET) and magnetic resonance imaging (MRI) are two commonly used imaging techniques to visualize brain function. The use of inter-network covariation (a functional connectome) is a widely used approach to infer links among different brain networks. While whole brain resting fMRI connectomes are widely used, PET data has mostly been analyzed using a few regions of interest. There has been much less work estimating PET spatial networks and almost no work on their connectivity (covariation) in the context of a whole brain data-driven connectome, nor have there been direct comparisons between whole brain PET and fMRI connectomes. Here we present an approach to leverage spatially constrained ICA to compute an estimate of the PET connectome. Results reveal highly modularized connectome patterns that are complementary to that identified from resting fMRI. Similarly, we were able to identify comparable resting networks from a PiB PET scan that can be directly compared to networks in rest fMRI data and results reveal similar, but not identical, network spatial patterns, with the PET networks being slightly smoother and, in some cases, showing variations in subnodes. The resulting networks, decomposed into spatial maps and subject expressions (loading parameters) linked to resting fMRI provide a new way to evaluate the complementary information in PET and fMRI and open up new possibilities for biomarker development.Clinical Relevance-This study analyzes the whole-brain PET and fMRI connectomes, capturing the complementary information from both imaging modalities, thereby introducing a new scope for biomarker development.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Biomarkers
  • Brain / diagnostic imaging
  • Connectome* / methods
  • Magnetic Resonance Imaging / methods
  • Positron-Emission Tomography / methods

Substances

  • Biomarkers