A light at the end of the tunnel - from mutation identification to a potential treatment for Alzheimer's disease

Ups J Med Sci. 2023 Nov 28:128. doi: 10.48101/ujms.v128.10316. eCollection 2023.

Abstract

Recent advances have driven the development of immunotherapies that act by either promoting or suppressing a patient's immune system to treat inflammation, autoimmune disease, cardiovascular disease, infectious diseases, and several cancers. In addition, research conducted over the past 25 years has identified therapeutic targets and indicated that immunotherapy could be used to treat Alzheimer's disease (AD). Despite a number of setbacks, this approach has now led to the development of the first disease-modifying treatments for this devastating disease. A key neuropathological feature of AD is the accumulation of a ~40-amino acid peptide known as amyloid β (Aβ) in the brain and cerebrovasculature. Our detection of an Aβ precursor protein mutation that caused early-onset AD in a Swedish family by enhancing Aβ protofibril formation sharpened the focus on soluble Aβ aggregates (oligomers and protofibrils) as viable therapeutic targets. Initial studies developed and tested a mouse monoclonal antibody (mAb158) with specific conformation-dependent binding to these soluble Aβ aggregates. Treatment with mAb158 selectively reduced Aβ protofibrils in the brain and cerebrospinal fluid of a transgenic mouse model of AD. A humanized version of mAb158 (lecanemab) subsequently entered clinical trials. Based on promising Phase 2 data showing plaque clearance and reduced cognitive decline, a Phase 3 trial found that lecanemab slowed decline on the primary cognitive endpoint by 27% over 18 months and also produced positive effects on secondary clinical endpoints and key biomarkers. In July 2023, the FDA granted lecanemab a full approval, and this therapeutic antibody will be marketed as Leqembi®. This represents a significant advance for patients with AD, although many challenges remain. In particular, it is now more important than ever to identify individuals who are vulnerable to AD, so that treatment can be initiated at an early stage in the disease process.

Keywords: Immunotherapy; Leqembi®; amyloid beta; lecanemab; monoclonal antibody; neurodegeneration.

Publication types

  • Review

MeSH terms

  • Alzheimer Disease* / genetics
  • Alzheimer Disease* / therapy
  • Amyloid beta-Peptides / metabolism
  • Amyloid beta-Protein Precursor / chemistry
  • Amyloid beta-Protein Precursor / genetics
  • Amyloid beta-Protein Precursor / metabolism
  • Animals
  • Humans
  • Mice
  • Mice, Transgenic
  • Mutation

Substances

  • Amyloid beta-Peptides
  • Amyloid beta-Protein Precursor