Muscle Cooling Before and in the Middle of a Session: There Are Benefits on Subsequent Localized Endurance Performance in a Warm Environment

J Strength Cond Res. 2024 Mar 1;38(3):533-539. doi: 10.1519/JSC.0000000000004641. Epub 2023 Dec 13.

Abstract

Baláš, J, Kodejška, J, Procházková, A, Knap, R, and Tufano, JJ. Muscle cooling before and in the middle of a session: there are benefits on subsequent localized endurance performance in a warm environment. J Strength Cond Res 38(3): 533-539, 2024-Localized cold-water immersion (CWI) has been shown to facilitate recovery in the middle of a session of exhaustive repeated forearm contractions. However, it has been suggested that these benefits may be attributed to "precooling" the muscle before an activity, as opposed to cooling a previously overheated muscle. Therefore, this study aimed to determine how precooling and mid-cooling affects localized repeated muscular endurance performance in a warm environment. Nineteen subjects completed a familiarization session and 3 laboratory visits, each including 2 exhaustive climbing trials separated by 20 minutes of recovery: PRE CWI (CWI, trial 1; passive sitting [PAS], trial 2); MID CWI (PAS, trial 1; CWI, trial 2); and CONTROL (PAS, trial 1; PAS, trial 2). Climbing trial 1 in PRE CWI was 32 seconds longer than in CONTROL ( p = 0.013; d = 0.46) and 47 seconds longer than in MID CWI ( p = 0.001; d = 0.81). The time of climbing trial 2 after PAS (PRE CWI and CONTROL) was very similar (312 vs. 319 seconds) irrespective of the first trial condition. However, the time of the second trial in MID CWI was 43 seconds longer than in PRE CWI ( p < 0.001; d = 0.63) and 50 seconds longer than in CONTROL ( p < 0.001; d = 0.69). In warm environments, muscle precooling and mid-cooling can prolong localized endurance performance during climbing. However, the effectiveness of mid-cooling may not be as a "recovery strategy" but as a "precooling" strategy to decrease muscle temperature before subsequent performance, delaying the onset of localized heat-induced neuromuscular fatigue.

Publication types

  • Clinical Study

MeSH terms

  • Cold Temperature
  • Heat Stress Disorders*
  • Hot Temperature
  • Humans
  • Immersion
  • Muscles
  • Water*

Substances

  • Water