Phase-Pure α-FAPbI3 Perovskite Solar Cells via Activating Lead-Iodine Frameworks

Adv Mater. 2024 Mar;36(13):e2309171. doi: 10.1002/adma.202309171. Epub 2023 Dec 24.

Abstract

Narrow bandgap cubic formamidine perovskite (α-FAPbI3) is widely studied for its potential to achieve record‑breaking efficiency. However, its high preparation difficulty caused by lattice instability is criticized. A popular strategy for stabilizing the α-FAPbI3 lattice is to replace intrinsic FA+ or I- with smaller ions of MA+, Cs+, Rb+, and Br-, whereas this generally leads to broadened optical bandgap and phase separation. Studies show that ions substitution-free phase-pure α-FAPbI3 can achieve intrinsic phase stability. However, the challenging preparation of high-quality films has hindered its further development. Here, a facile synthesis of high-quality MA+, Cs+, Rb+, and Br--free phase-pure α-FAPbI3 perovskite film by a new solution modification strategy is reported. This enables the activation of lead-iodine (Pb─I) frameworks by forming the coated Pb⋯O network, thus simultaneously promoting spontaneous homogeneous nucleation and rapid phase transition from δ to α phase. As a result, the efficient and stable phase-pure α-FAPbI3 PSC is obtained through a one-step method without antisolvent treatment, with a record efficiency of 23.15% and excellent long-term operating stability for 500 h under continuous light stress.

Keywords: Pb─I frameworks; chemical interaction; phase transition; phase‐pure α‐FAPbI3.