A rapid method for phosphocreatine-weighted imaging in muscle using double saturation power-chemical exchange saturation transfer

NMR Biomed. 2024 Apr;37(4):e5089. doi: 10.1002/nbm.5089. Epub 2023 Dec 19.

Abstract

Monitoring the variation in phosphocreatine (PCr) levels following exercise provides valuable insights into muscle function. Chemical exchange saturation transfer (CEST) has emerged as a sensitive method with which to measure PCr levels in muscle, surpassing conventional MR spectroscopy. However, existing approaches for quantifying PCr CEST signals rely on time-consuming fitting methods that require the acquisition of the entire or a section of the CEST Z-spectrum. Additionally, traditional fitting methods often necessitate clear CEST peaks, which may be challenging to obtain at low magnetic fields. This paper evaluated the application of a new model-free method using double saturation power (DSP), termed DSP-CEST, to estimate the PCr CEST signal in muscle. The DSP-CEST method requires the acquisition of only two or a few CEST signals at the PCr frequency offset with two different saturation powers, enabling rapid dynamic imaging. Additionally, the DSP-CEST approach inherently eliminates confounding signals, offering enhanced robustness compared with fitting methods. Furthermore, DSP-CEST does not demand clear CEST peaks, making it suitable for low-field applications. We evaluated the capability of DSP-CEST to enhance the specificity of PCr CEST imaging through simulations and experiments on muscle tissue phantoms at 4.7 T. Furthermore, we applied DSP-CEST to animal leg muscle both before and after euthanasia and observed successful reduction of confounding signals. The DSP-CEST signal still has contaminations from a residual magnetization transfer (MT) effect and an aromatic nuclear Overhauser enhancement effect, and thus only provides a PCr-weighted imaging. The residual MT effect can be reduced by a subtraction of DSP-CEST signals at 2.6 and 5 ppm. Results show that the residual MT-corrected DSP-CEST signal at 2.6 ppm has significant variation in postmortem tissues. By contrast, both the CEST signal at 2.6 ppm and a conventional Lorentzian difference analysis of CEST signal at 2.6 ppm demonstrate no significant variation in postmortem tissues.

Keywords: chemical exchange saturation transfer; muscle; phosphocreatine.

MeSH terms

  • Animals
  • Image Enhancement / methods
  • Magnetic Resonance Imaging* / methods
  • Magnetic Resonance Spectroscopy / methods
  • Muscle, Skeletal* / diagnostic imaging
  • Phosphocreatine

Substances

  • Phosphocreatine