Influence of ozone supply mode and aeration on photocatalytic ozonation of organic pollutants in wastewater using TiO2 and ZnO nanoparticles

Heliyon. 2023 Nov 24;9(12):e22854. doi: 10.1016/j.heliyon.2023.e22854. eCollection 2023 Dec.

Abstract

Photocatalytic ozonation, which combines the effects of lighting and ozonation, has been shown to enhance the decolorization and degradation of organic pollutants in wastewater. Dye solutions with concentrations of 10 ppm for both methylene blue and methyl orange dyes were used. The influence of ozoneation on the performance of photocatalytic activity of TiO2 and ZnO nanoparticles for the removal of organic dyes from aqueous solutions was investigated. To evaluate their efficacy for the removal of methylene blue and methyl orange dyes from aqueous solutions, the photocatalysts were exposed to UV light for 90 min, with ozone supplied either intermittently or continuously by an SDBD cold plasma reactor. The photocatalysts utilized in this study were characterized using SEM and XRD techniques. The degree of color degradation was determined using UV-Vis spectroscopy. The results demonstrate that TiO2 and ZnO nanoparticles exhibit different degrees of photocatalytic activity for the two dyes. The addition of ozone was found to enhance both the color degradation and mineralization rates of the pollutants, with intermittent ozonation proving more effective than continuous ozonation. The most significant color degradation results were obtained using TiO2 nanoparticles with intermittent ozonation for methylene blue dye (97 %) and ZnO nanoparticles with intermittent ozonation for methyl orange dye (40 %). Overall, this study provides evidence that photocatalytic ozonation represents a promising technique for water treatment.

Keywords: Cold plasma; Nanoparticles; Organic dyes; Ozonation; Photocatalysts; Pollutants; Wastewater.