Ginkgolide B Blocks Vascular Remodeling after Vascular Injury via Regulating Tgf β 1/Smad Signaling Pathway

Cardiovasc Ther. 2023 Dec 13:2023:8848808. doi: 10.1155/2023/8848808. eCollection 2023.

Abstract

Coronary artery disease (CAD) is the most prevalent cardiovascular disease worldwide, resulting in myocardial infarction (MI) and even sudden death. Following percutaneous coronary intervention (PCI), restenosis caused by vascular remodeling is always formed at the stent implantation site. Here, we show that Ginkgolide B (GB), a naturally occurring terpene lactone, effectively suppresses vascular remodeling and subsequent restenosis in wild-type mice following left carotid artery (LCA) injury. Additional experiments reveal that GB exerts a protective effect on vascular remodeling and further restenosis through modulation of the Tgfβ1/Smad signaling pathway in vivo and in human vascular smooth muscle cells (HVSMAs) but not in human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, the beneficial effect of GB is abolished after incubated with pirfenidone (PFD, a drug for idiopathic pulmonary fibrosis, IPF), which can inhibit Tgfβ1. In Tgfβ1-/- mice, treatment with pirfenidone capsules and Yinxingneizhi Zhusheye (including Ginkgolide B) fails to improve vascular remodeling and restenosis. In conclusion, our data identify that GB could be a potential novel therapeutic agent to block vessel injury-associated vascular remodeling and further restenosis and show significant repression of Tgfβ1/Smad signaling pathway.

MeSH terms

  • Animals
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Lactones / pharmacology
  • Mice
  • Percutaneous Coronary Intervention*
  • Signal Transduction
  • Vascular Remodeling / physiology
  • Vascular System Injuries* / metabolism

Substances

  • ginkgolide B
  • Lactones