Objective: To investigate the potential of amide proton transfer-weighted (APTw) MRI in identifying benign and malignant renal tumors and to evaluate whether APTw MRI can add diagnostic value to diffusion-weighted imaging (DWI).
Materials and methods: Participants with renal tumor underwent preoperative multiparametric MRI, including APTw MRI and DWI. The APTw and apparent diffusion coefficient (ADC) of malignant tumors and benign tumors were calculated independently by two radiologists and compared. The value of the mean APTw and the mean ADC for differentiating malignant and benign tumors was evaluated by receiver operating characteristic analysis.
Results: In total, 65 participants (mean age, 59 years ±14; 41 men) were evaluated: 54 with malignant and 11 with benign renal tumors. Malignant renal tumors showed higher mean APTw values [2.03% (1.63) vs 1.00% (1.60); P < 0.01] and lower mean ADC values (1.22 × 10-3 mm2/s ± 0.37 vs 1.51 × 10-3 mm2/s ± 0.37; P < 0.05) than benign renal tumors. The area under the receiver operating characteristic curve (AUC) of APTw, ADC and the combination of them for the identification of benign and malignant renal tumors was 0.78(95% CI: 0.66, 0.87; P < 0.001),0.70(95% CI: 0.54, 0.86; P < 0.05) and 0.79 (95% CI: 0.67, 0.88; P < 0.001). The optimal cutoff value for mean APTw was 2.14% (sensitivity, 74%; specificity, 73%). There was no difference between these three parameters for differentiating malignant from benign renal tumors (P > 0.05).
Conclusion: The APTw MRI has the potential use as an imaging biomarker for renal malignant and benign tumors.
Keywords: Amide proton transfer-weighted (APTw); Diffusion weighted imaging (DWI); Magnetic resonance imaging (MRI); Renal tumor.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.