Xylan cinnamoylation for reinforcing poly (butylene adipate-co-terephthalate): Molecule design and interaction optimization

Carbohydr Polym. 2024 Feb 15:326:121592. doi: 10.1016/j.carbpol.2023.121592. Epub 2023 Nov 18.

Abstract

PBAT composites with biomass fillers have gained considerable attention as alternatives to non-biodegradable plastics. This work employed xylan derivatives as fillers for PBAT composites. Xylan was modified by introducing cinnamoyl side groups which limit the hydrogen bonding and construct π-π stacking interactions with PBAT chains. The resultant xylan cinnamates (XCi) show degree of substitution (DS) of 0.55-1.89, glass-transition temperatures (Tg) of 146.5-175.0 °C and increased hydrophobicity, which can be simply controlled by varying the molar ratio of reactants. NMR results demonstrate that the C3-OH of xylopyranosyl unit is more accessible to cinnamoylation. XCi fillers (30-50 wt%) were incorporated into PBAT through melt compounding. The filler with a DS of 0.97 exhibited the optimal reinforcing effect, showing superior tensile strength (19.4 MPa) and elongation at break (330.9 %) at a high filling content (40 wt%), which is even beyond the neat PBAT. SEM and molecular dynamics simulation suggest improved compatibility and strengthened molecular interaction between XCi and PBAT, which explains the suppressed melting/crystallization behavior, the substantial increase in Tg (-34.5 → -1.8 °C) and the superior mechanical properties of the composites. This research provides valuable insights into the preparation of high-performance composites by designing the molecular architecture of xylan and optimizing the associated interactions.

Keywords: Cinnamoylation; Compatibility; Mechanical properties; PBAT; Thermal behavior; Xylan.