Effect of Silicone Patch Containing Metal-organic Framework on Hypertrophic Scar Suppression

In Vivo. 2024 Jan-Feb;38(1):235-245. doi: 10.21873/invivo.13430.

Abstract

Background/aim: Hypertrophic scars (HS) are an abnormal cutaneous condition of wound healing characterized by excessive fibrosis and disrupted collagen deposition. This study assessed the potential of a silicone patch embedded with chemically stable zirconium-based metal-organic frameworks (MOF)-808 structures to mitigate HS formation using a rabbit ear model.

Materials and methods: A silicone patch was strategically engineered by incorporating Zr-MOF-808, a composite structure comprising metal ions and organic ligands. Structural integrity of the Zr-MOF-808 silicone patch was validated using scanning electron microscopy and X-ray diffraction analysis. The animals were divided into three groups: a control, no treatment group (Group 1), a silicone patch treatment group (Group 2), and a group treated with a 0.2% loaded Zr-MOF-808 silicone patch (Group 3). HS suppression effects were quantified using scar elevation index (SEI), dorsal skin thickness measurements, and myofibroblast protein expression.

Results: Histopathological examination of post-treatment HS samples revealed substantial reductions in SEI (34.6%) and epidermal thickness (49.5%) in Group 3. Scar hyperplasia was significantly diminished by 53.5% (p<0.05), while collagen density declined by 15.7% in Group 3 compared to Group 1. Western blot analysis of protein markers, including TGF-β1, collagen-1, and α-SMA, exhibited diminished levels by 8.8%, 12%, and 21.3%, respectively, in Group 3, and substantially higher levels by 21.9%, 27%, and 39.9%, respectively, in Group 2. On the 35th day post-wound generation, Zr-MOF-808-treated models exhibited smoother, less conspicuous, and flatter scars.

Conclusion: Zr-MOF-808-loaded silicone patch reduced HS formation in rabbit ear models by inducing the proliferation and remodeling of the wound healing process.

Keywords: Hypertrophic scar; Zr-MOF-808; alpha-smooth muscle actin (α- SMA); metal-organic frameworks (MOF); myofibroblasts; silicone patch; transforming growth factor β1 (TGF- β1).

MeSH terms

  • Animals
  • Cicatrix, Hypertrophic* / metabolism
  • Cicatrix, Hypertrophic* / pathology
  • Collagen / metabolism
  • Collagen Type I / metabolism
  • Collagen Type I / pharmacology
  • Fibroblasts
  • Metal-Organic Frameworks* / metabolism
  • Metal-Organic Frameworks* / pharmacology
  • Rabbits
  • Transforming Growth Factor beta1 / metabolism
  • Transforming Growth Factor beta1 / pharmacology

Substances

  • Metal-Organic Frameworks
  • Collagen Type I
  • Collagen
  • Transforming Growth Factor beta1